Skip to content
Snippets Groups Projects

Update tutorials.json

Merged Luigi Sbailo requested to merge staging into master
1 file
+ 40
1
Compare changes
  • Side-by-side
  • Inline
+ 40
1
@@ -747,7 +747,7 @@
"email": "leitherer@fhi-berlin.mpg.de",
"title": "ARISE - Robust recognition and exploratory analysis of crystal structures via Bayesian-deep-learning",
"description": "In this tutorial we will give an introduction to ARISE (Leitherer, Ziletti, Ghiringhelli arXiv:2103.09777).",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-arise",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/ARISE.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/ARISE.ipynb",
"link_paper": "https://arxiv.org/abs/2103.09777",
@@ -784,6 +784,45 @@
"jupyter"
]
}
},
{
"authors": [
"Leitherer, Andreas",
"Sbailò, Luigi",
"Ghiringhelli, Luca M."
],
"email": "leitherer@fhi-berlin.mpg.de",
"title": "Hands-on tutorial: Regression using multilayer perceptrons",
"description": "In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-nn-regression",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/nn_regression.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/nn_regression.ipynb",
"updated": "2020-04-09",
"flags":{
"featured": true,
"top_of_list": false
},
"labels": {
"application_keyword": [
"Dee neural networks",
"Descriptors"
],
"application_section": [
"Materials property prediction"
],
"application_system": [
"Inorganic compounds taken from the OQMD database"
],
"category": [
"Tutorial"
],
"data_analytics_method": [
"Neural networks"
],
"platform": [
"jupyter"
]
}
}
]
}
Loading