From 873dd8f5f15ebe84af9c343e9cebc87a7db4e055 Mon Sep 17 00:00:00 2001 From: Luigi Sbailo <sbailo@fhi-berlin.mpg.de> Date: Wed, 24 Mar 2021 10:28:23 +0100 Subject: [PATCH] Update tutorials.json --- tutorials.json | 41 ++++++++++++++++++++++++++++++++++++++++- 1 file changed, 40 insertions(+), 1 deletion(-) diff --git a/tutorials.json b/tutorials.json index c43c2c04..6150b8a3 100644 --- a/tutorials.json +++ b/tutorials.json @@ -747,7 +747,7 @@ "email": "leitherer@fhi-berlin.mpg.de", "title": "ARISE - Robust recognition and exploratory analysis of crystal structures via Bayesian-deep-learning", "description": "In this tutorial we will give an introduction to ARISE (Leitherer, Ziletti, Ghiringhelli arXiv:2103.09777).", - "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template", + "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-arise", "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/ARISE.ipynb", "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/ARISE.ipynb", "link_paper": "https://arxiv.org/abs/2103.09777", @@ -784,6 +784,45 @@ "jupyter" ] } + }, + { + "authors": [ + "Leitherer, Andreas", + "Sbailò, Luigi", + "Ghiringhelli, Luca M." + ], + "email": "leitherer@fhi-berlin.mpg.de", + "title": "Hands-on tutorial: Regression using multilayer perceptrons", + "description": "In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).", + "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-nn-regression", + "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/nn_regression.ipynb", + "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/nn_regression.ipynb", + "updated": "2020-04-09", + "flags":{ + "featured": true, + "top_of_list": false + }, + "labels": { + "application_keyword": [ + "Dee neural networks", + "Descriptors" + ], + "application_section": [ + "Materials property prediction" + ], + "application_system": [ + "Inorganic compounds taken from the OQMD database" + ], + "category": [ + "Tutorial" + ], + "data_analytics_method": [ + "Neural networks" + ], + "platform": [ + "jupyter" + ] + } } ] } -- GitLab