"title":"Hands-on tutorial: Regression using multilayer perceptrons",
"description":"In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).",
"Inorganic compounds taken from the OQMD database"
],
"category":[
"Tutorial"
],
"data_analytics_method":[
"Neural networks"
],
"platform":[
"jupyter"
]
}
},
{
{
"authors":[
"authors":[
"Bieniek, Bj\u00f6rn",
"Bieniek, Bj\u00f6rn",
...
@@ -207,8 +168,8 @@
...
@@ -207,8 +168,8 @@
"Ghiringhelli, Luca M."
"Ghiringhelli, Luca M."
],
],
"email":"sbailo@fhi-berlin.mpg.de",
"email":"sbailo@fhi-berlin.mpg.de",
"title":"Introduction into clustering",
"title":"Introduction to clustering",
"description":"In this tutorial we introduce into the most popular clustering algorithms",
"description":"In this tutorial we introduce to the most popular clustering algorithms. We focus on partitioning, hierarchical and density-based clustering algorithms, and methods are tested on artificial datasets of increasing complexity",