Skip to content
Snippets Groups Projects
Commit 805a120e authored by Luigi Sbailo's avatar Luigi Sbailo
Browse files

Update clustering tutorial for production

parent f2d9e5c2
Branches
No related tags found
1 merge request!40Update compressed sensing tutorial
...@@ -85,45 +85,6 @@ ...@@ -85,45 +85,6 @@
] ]
} }
}, },
{
"authors": [
"Leitherer, Andreas",
"Sbail\u00f2, Luigi",
"Ghiringhelli, Luca M."
],
"email": "leitherer@fhi-berlin.mpg.de",
"title": "Hands-on tutorial: Regression using multilayer perceptrons",
"description": "In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"updated": "2020-04-09",
"flags": {
"featured": true,
"top_of_list": false
},
"labels": {
"application_keyword": [
"Neural networks / deep learning",
"Descriptors"
],
"application_section": [
"Materials property prediction"
],
"application_system": [
"Inorganic compounds taken from the OQMD database"
],
"category": [
"Tutorial"
],
"data_analytics_method": [
"Neural networks"
],
"platform": [
"jupyter"
]
}
},
{ {
"authors": [ "authors": [
"Bieniek, Bj\u00f6rn", "Bieniek, Bj\u00f6rn",
...@@ -207,8 +168,8 @@ ...@@ -207,8 +168,8 @@
"Ghiringhelli, Luca M." "Ghiringhelli, Luca M."
], ],
"email": "sbailo@fhi-berlin.mpg.de", "email": "sbailo@fhi-berlin.mpg.de",
"title": "Introduction into clustering", "title": "Introduction to clustering",
"description": "In this tutorial we introduce into the most popular clustering algorithms", "description": "In this tutorial we introduce to the most popular clustering algorithms. We focus on partitioning, hierarchical and density-based clustering algorithms, and methods are tested on artificial datasets of increasing complexity",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-clustering-tutorial", "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-clustering-tutorial",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb", "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb", "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb",
...@@ -266,7 +227,7 @@ ...@@ -266,7 +227,7 @@
"Tutorials for artificial-intelligence methods" "Tutorials for artificial-intelligence methods"
], ],
"application_system": [ "application_system": [
"Images" "Imates"
], ],
"category": [ "category": [
"Tutorial" "Tutorial"
...@@ -364,46 +325,6 @@ ...@@ -364,46 +325,6 @@
] ]
} }
}, },
{
"authors": [
"Lucas Foppa",
"Thomas Purcell",
"Sbail\u00f2, Luigi",
"Christopher Bartel",
"Ghiringhelli, Luca M."
],
"email": "ghiringhelli@fhi-berlin.mpg.de",
"title": "Finding a tolerance factor to predict perovskite stability with SISSO",
"description": "In this tutorial...",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-perovskite-tolerance-factor",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"updated": "2020-04-09",
"flags": {
"featured": true,
"top_of_list": false
},
"labels": {
"application_keyword": [
"SISSO"
],
"application_section": [
"Materials property prediction"
],
"application_system": [
"Perovskite"
],
"category": [
"Tutorial"
],
"data_analytics_method": [
"SISSO"
],
"platform": [
"jupyter"
]
}
},
{ {
"authors": [ "authors": [
"Langer, Marcel F." "Langer, Marcel F."
...@@ -524,43 +445,6 @@ ...@@ -524,43 +445,6 @@
] ]
} }
}, },
{
"authors": [
"Sbail\u00f2, Luigi",
"Ghiringhelli, Luca M."
],
"email": "ghiringhelli@fhi-berlin.mpg.de",
"title": "...",
"description": "...",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-hisisso-perovskites",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/hisisso_perovskites.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/hisisso_perovskites.ipynb",
"updated": "2020-09-5",
"flags": {
"featured": true,
"top_of_list": false
},
"labels": {
"application_keyword": [
"..."
],
"application_section": [
"..."
],
"application_system": [
"..."
],
"category": [
"..."
],
"data_analytics_method": [
"..."
],
"platform": [
"jupyter"
]
}
},
{ {
"authors": [ "authors": [
"Liu, Xiangyue", "Liu, Xiangyue",
......
Subproject commit 9a2365d74049bb80514e5c82bc3507035d6e779d Subproject commit 1b3864285d6a7d6d0e04754692622ca6f83fffbe
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment