From 805a120ea3c932eb76c60c43d293571ff86b4c25 Mon Sep 17 00:00:00 2001 From: Luigi Sbailo <sbailo@fhi-berlin.mpg.de> Date: Wed, 16 Dec 2020 23:25:31 +0100 Subject: [PATCH] Update clustering tutorial for production --- tutorials.json | 122 +----------------------- tutorials/analytics-clustering-tutorial | 2 +- 2 files changed, 4 insertions(+), 120 deletions(-) diff --git a/tutorials.json b/tutorials.json index 5a9f05ab..f72f5150 100644 --- a/tutorials.json +++ b/tutorials.json @@ -85,45 +85,6 @@ ] } }, - { - "authors": [ - "Leitherer, Andreas", - "Sbail\u00f2, Luigi", - "Ghiringhelli, Luca M." - ], - "email": "leitherer@fhi-berlin.mpg.de", - "title": "Hands-on tutorial: Regression using multilayer perceptrons", - "description": "In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).", - "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template", - "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb", - "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb", - "updated": "2020-04-09", - "flags": { - "featured": true, - "top_of_list": false - }, - "labels": { - "application_keyword": [ - "Neural networks / deep learning", - "Descriptors" - ], - "application_section": [ - "Materials property prediction" - ], - "application_system": [ - "Inorganic compounds taken from the OQMD database" - ], - "category": [ - "Tutorial" - ], - "data_analytics_method": [ - "Neural networks" - ], - "platform": [ - "jupyter" - ] - } - }, { "authors": [ "Bieniek, Bj\u00f6rn", @@ -207,8 +168,8 @@ "Ghiringhelli, Luca M." ], "email": "sbailo@fhi-berlin.mpg.de", - "title": "Introduction into clustering", - "description": "In this tutorial we introduce into the most popular clustering algorithms", + "title": "Introduction to clustering", + "description": "In this tutorial we introduce to the most popular clustering algorithms. We focus on partitioning, hierarchical and density-based clustering algorithms, and methods are tested on artificial datasets of increasing complexity", "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-clustering-tutorial", "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb", "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/clustering_tutorial.ipynb", @@ -266,7 +227,7 @@ "Tutorials for artificial-intelligence methods" ], "application_system": [ - "Images" + "Imates" ], "category": [ "Tutorial" @@ -364,46 +325,6 @@ ] } }, - { - "authors": [ - "Lucas Foppa", - "Thomas Purcell", - "Sbail\u00f2, Luigi", - "Christopher Bartel", - "Ghiringhelli, Luca M." - ], - "email": "ghiringhelli@fhi-berlin.mpg.de", - "title": "Finding a tolerance factor to predict perovskite stability with SISSO", - "description": "In this tutorial...", - "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-perovskite-tolerance-factor", - "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb", - "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb", - "updated": "2020-04-09", - "flags": { - "featured": true, - "top_of_list": false - }, - "labels": { - "application_keyword": [ - "SISSO" - ], - "application_section": [ - "Materials property prediction" - ], - "application_system": [ - "Perovskite" - ], - "category": [ - "Tutorial" - ], - "data_analytics_method": [ - "SISSO" - ], - "platform": [ - "jupyter" - ] - } - }, { "authors": [ "Langer, Marcel F." @@ -524,43 +445,6 @@ ] } }, - { - "authors": [ - "Sbail\u00f2, Luigi", - "Ghiringhelli, Luca M." - ], - "email": "ghiringhelli@fhi-berlin.mpg.de", - "title": "...", - "description": "...", - "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-hisisso-perovskites", - "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/hisisso_perovskites.ipynb", - "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/hisisso_perovskites.ipynb", - "updated": "2020-09-5", - "flags": { - "featured": true, - "top_of_list": false - }, - "labels": { - "application_keyword": [ - "..." - ], - "application_section": [ - "..." - ], - "application_system": [ - "..." - ], - "category": [ - "..." - ], - "data_analytics_method": [ - "..." - ], - "platform": [ - "jupyter" - ] - } - }, { "authors": [ "Liu, Xiangyue", diff --git a/tutorials/analytics-clustering-tutorial b/tutorials/analytics-clustering-tutorial index 9a2365d7..1b386428 160000 --- a/tutorials/analytics-clustering-tutorial +++ b/tutorials/analytics-clustering-tutorial @@ -1 +1 @@ -Subproject commit 9a2365d74049bb80514e5c82bc3507035d6e779d +Subproject commit 1b3864285d6a7d6d0e04754692622ca6f83fffbe -- GitLab