Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
NIFTy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ift
NIFTy
Commits
55b560a6
Commit
55b560a6
authored
4 years ago
by
Philipp Frank
Browse files
Options
Downloads
Patches
Plain Diff
include mfvi and fcvi into vi visualized demo
parent
98078146
No related branches found
No related tags found
2 merge requests
!648
Work on vi visualized
,
!604
Parametric MGVI
Pipeline
#103290
passed
4 years ago
Stage: static_checks
Stage: build_docker
Stage: test
Stage: demo_runs
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
demos/variational_inference_visualized.py
+71
-45
71 additions, 45 deletions
demos/variational_inference_visualized.py
with
71 additions
and
45 deletions
demos/variational_inference_visualized.py
+
71
−
45
View file @
55b560a6
...
@@ -74,65 +74,91 @@ def main():
...
@@ -74,65 +74,91 @@ def main():
plt
.
pause
(
2.0
)
plt
.
pause
(
2.0
)
plt
.
close
()
plt
.
close
()
pos
=
ift
.
from_random
(
ham
.
domain
,
'
normal
'
)
mapx
=
xx
[
z
==
np
.
max
(
z
)]
MAP
=
ift
.
EnergyAdapter
(
pos
,
ham
,
want_metric
=
True
)
mapy
=
yy
[
z
==
np
.
max
(
z
)]
minimizer
=
ift
.
NewtonCG
(
meanx
=
(
xx
*
z
).
sum
()
/
z
.
sum
()
ift
.
GradientNormController
(
iteration_limit
=
20
,
name
=
'
Mini
'
))
meany
=
(
yy
*
z
).
sum
()
/
z
.
sum
()
MAP
,
_
=
minimizer
(
MAP
)
map_xs
,
map_ys
=
[],
[]
for
ii
in
range
(
10
):
samp
=
(
MAP
.
metric
.
draw_sample
(
from_inverse
=
True
)
+
MAP
.
position
).
val
map_xs
.
append
(
samp
[
'
a
'
])
map_ys
.
append
(
samp
[
'
b
'
])
n_samples
=
100
minimizer
=
ift
.
NewtonCG
(
minimizer
=
ift
.
NewtonCG
(
ift
.
GradientNormController
(
iteration_limit
=
2
,
name
=
'
Mini
'
))
ift
.
GradientNormController
(
iteration_limit
=
2
,
name
=
'
Mini
'
))
pos
=
pos1
=
ift
.
from_random
(
ham
.
domain
,
'
normal
'
)
IC
=
ift
.
StochasticAbsDeltaEnergyController
(
0.1
,
iteration_limit
=
20
,
fig
,
axs
=
plt
.
subplots
(
2
,
1
,
figsize
=
[
12
,
8
])
name
=
'
advi
'
)
for
ii
in
range
(
15
):
stochastic_minimizer_mf
=
ift
.
ADVIOptimizer
(
IC
,
eta
=
0.5
)
if
ii
%
3
==
0
:
stochastic_minimizer_fc
=
ift
.
ADVIOptimizer
(
IC
,
eta
=
0.5
)
# Resample
posmg
=
posgeo
=
posmf
=
posfc
=
ift
.
from_random
(
ham
.
domain
,
'
normal
'
)
mgkl
=
ift
.
MetricGaussianKL
(
pos
,
ham
,
100
,
False
)
fc
=
ift
.
FullCovarianceVI
(
posfc
,
ham
,
10
,
False
,
initial_sig
=
0.01
)
mini_samp
=
ift
.
NewtonCG
(
ift
.
GradientNormController
(
iteration_limit
=
5
))
mf
=
ift
.
MeanFieldVI
(
posmf
,
ham
,
10
,
False
,
initial_sig
=
0.01
)
geokl
=
ift
.
GeoMetricKL
(
pos1
,
ham
,
100
,
mini_samp
,
False
)
fig
,
axs
=
plt
.
subplots
(
2
,
2
,
figsize
=
[
12
,
8
])
for
axx
in
axs
:
axs
=
axs
.
flatten
()
def
update_plot
(
runs
):
for
axx
,
(
nn
,
kl
,
pp
,
sam
)
in
zip
(
axs
,
runs
):
axx
.
clear
()
axx
.
clear
()
im
=
axx
.
imshow
(
z
.
T
,
origin
=
'
lower
'
,
norm
=
LogNorm
(
vmin
=
1e-3
,
vmax
=
np
.
max
(
z
)),
axx
.
imshow
(
z
.
T
,
origin
=
'
lower
'
,
norm
=
LogNorm
(
vmin
=
1e-3
,
vmax
=
np
.
max
(
z
)),
cmap
=
'
gist_earth_r
'
,
extent
=
x_limits_scaled
+
y_limits
)
cmap
=
'
gist_earth_r
'
,
extent
=
x_limits_scaled
+
y_limits
)
if
ii
==
0
:
cbar
=
plt
.
colorbar
(
im
,
ax
=
axx
)
cbar
.
ax
.
set_ylabel
(
'
pdf
'
)
for
jj
,
nn
,
kl
,
pp
in
((
0
,
"
MGVI
"
,
mgkl
,
pos
),
(
1
,
"
GeoVI
"
,
geokl
,
pos1
)):
xs
,
ys
=
[],
[]
xs
,
ys
=
[],
[]
for
samp
in
kl
.
samples
:
if
sam
:
samp
=
(
samp
+
pp
).
val
samples
=
(
samp
+
pp
for
samp
in
kl
.
samples
)
xs
.
append
(
samp
[
'
a
'
])
else
:
ys
.
append
(
samp
[
'
b
'
])
samples
=
(
kl
.
draw_sample
()
for
_
in
range
(
n_samples
))
axs
[
jj
].
scatter
(
np
.
array
(
xs
)
*
scale
,
np
.
array
(
ys
),
label
=
f
'
{
nn
}
samples
'
)
mx
,
my
=
0.
,
0.
axs
[
jj
].
scatter
(
pp
.
val
[
'
a
'
]
*
scale
,
pp
.
val
[
'
b
'
],
label
=
f
'
{
nn
}
latent mean
'
)
for
samp
in
samples
:
axs
[
jj
].
set_title
(
nn
)
a
=
samp
.
val
[
'
a
'
]
xs
.
append
(
a
)
for
axx
in
axs
:
mx
+=
a
axx
.
scatter
(
np
.
array
(
map_xs
)
*
scale
,
np
.
array
(
map_ys
),
b
=
samp
.
val
[
'
b
'
]
label
=
'
Laplace samples
'
)
ys
.
append
(
b
)
axx
.
scatter
(
MAP
.
position
.
val
[
'
a
'
]
*
scale
,
MAP
.
position
.
val
[
'
b
'
],
my
+=
b
label
=
'
Maximum a posterior solution
'
)
mx
/=
n_samples
my
/=
n_samples
axx
.
scatter
(
np
.
array
(
xs
)
*
scale
,
np
.
array
(
ys
),
label
=
f
'
{
nn
}
samples
'
)
axx
.
scatter
(
mx
*
scale
,
my
,
label
=
f
'
{
nn
}
mean
'
)
axx
.
scatter
(
mapx
*
scale
,
mapy
,
label
=
'
MAP
'
)
axx
.
scatter
(
meanx
*
scale
,
meany
,
label
=
'
Posterior mean
'
)
axx
.
set_title
(
nn
)
axx
.
set_xlim
(
x_limits_scaled
)
axx
.
set_xlim
(
x_limits_scaled
)
axx
.
set_ylim
(
y_limits
)
axx
.
set_ylim
(
y_limits
)
axx
.
set_ylabel
(
'
y
'
)
axx
.
legend
(
loc
=
'
lower right
'
)
axx
.
legend
(
loc
=
'
lower right
'
)
axs
[
0
].
xaxis
.
set_visible
(
False
)
axs
[
0
].
xaxis
.
set_visible
(
False
)
axs
[
1
].
set_xlabel
(
'
x
'
)
axs
[
1
].
xaxis
.
set_visible
(
False
)
axs
[
1
].
yaxis
.
set_visible
(
False
)
axs
[
2
].
set_xlabel
(
'
x
'
)
axs
[
2
].
set_ylabel
(
'
y
'
)
axs
[
3
].
yaxis
.
set_visible
(
False
)
axs
[
3
].
set_xlabel
(
'
x
'
)
plt
.
tight_layout
()
plt
.
tight_layout
()
plt
.
draw
()
plt
.
draw
()
plt
.
pause
(
1.0
)
plt
.
pause
(
2.0
)
for
ii
in
range
(
15
):
if
ii
%
2
==
0
:
# Resample
mgkl
=
ift
.
MetricGaussianKL
(
posmg
,
ham
,
n_samples
,
False
)
mini_samp
=
ift
.
NewtonCG
(
ift
.
AbsDeltaEnergyController
(
1E-8
,
iteration_limit
=
5
))
geokl
=
ift
.
GeoMetricKL
(
posgeo
,
ham
,
n_samples
,
mini_samp
,
False
)
runs
=
((
"
MGVI
"
,
mgkl
,
posmg
,
True
),
(
"
GeoVI
"
,
geokl
,
posgeo
,
True
),
(
"
MeanfieldVI
"
,
mf
,
posmf
,
False
),
(
"
FullCovarianceVI
"
,
fc
,
posfc
,
False
))
update_plot
(
runs
)
mgkl
,
_
=
minimizer
(
mgkl
)
mgkl
,
_
=
minimizer
(
mgkl
)
geokl
,
_
=
minimizer
(
geokl
)
geokl
,
_
=
minimizer
(
geokl
)
pos
=
mgkl
.
position
mf
.
minimize
(
stochastic_minimizer_mf
)
pos1
=
geokl
.
position
fc
.
minimize
(
stochastic_minimizer_fc
)
posmg
=
mgkl
.
position
posgeo
=
geokl
.
position
posmf
=
mf
.
mean
posfc
=
fc
.
mean
runs
=
((
"
MGVI
"
,
mgkl
,
posmg
,
True
),
(
"
GeoVI
"
,
geokl
,
posgeo
,
True
),
(
"
MeanfieldVI
"
,
mf
,
posmf
,
False
),
(
"
FullCovarianceVI
"
,
fc
,
posfc
,
False
))
update_plot
(
runs
)
ift
.
logger
.
info
(
'
Finished
'
)
ift
.
logger
.
info
(
'
Finished
'
)
# Uncomment the following line in order to leave the plots open
# Uncomment the following line in order to leave the plots open
# plt.show()
# plt.show()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment