Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
175a8a95
Commit
175a8a95
authored
Jul 13, 2018
by
Martin Reinecke
Browse files
FFTOperator seems to be working
parent
f099ab83
Changes
2
Hide whitespace changes
Inline
Side-by-side
nifty5/operators/fft_operator.py
View file @
175a8a95
...
...
@@ -67,41 +67,35 @@ class FFTOperator(LinearOperator):
utilities
.
fft_prep
()
def
apply
(
self
,
x
,
mode
):
from
pyfftw.interfaces.numpy_fft
import
fftn
,
ifftn
self
.
_check_input
(
x
,
mode
)
if
np
.
issubdtype
(
x
.
dtype
,
np
.
complexfloating
):
return
(
self
.
_apply_cartesian
(
x
.
real
,
mode
)
+
1j
*
self
.
_apply_cartesian
(
x
.
imag
,
mode
))
ncells
=
x
.
domain
[
self
.
_space
].
size
if
x
.
domain
[
self
.
_space
].
harmonic
:
# harmonic -> position
func
=
fftn
fct
=
1.
else
:
return
self
.
_apply_cartesian
(
x
,
mode
)
def
_apply_cartesian
(
self
,
x
,
mode
):
func
=
ifftn
fct
=
ncells
axes
=
x
.
domain
.
axes
[
self
.
_space
]
tdom
=
self
.
_tgt
(
mode
)
oldax
=
dobj
.
distaxis
(
x
.
val
)
if
oldax
not
in
axes
:
# straightforward, no redistribution needed
ldat
=
x
.
local_data
ldat
=
utilities
.
hartley
(
ldat
,
axes
=
axes
)
ldat
=
func
(
ldat
,
axes
=
axes
)
tmp
=
dobj
.
from_local_data
(
x
.
val
.
shape
,
ldat
,
distaxis
=
oldax
)
elif
len
(
axes
)
<
len
(
x
.
shape
)
or
len
(
axes
)
==
1
:
# we can use one
Hartley
pass in between the redistributions
# we can use one
FFT
pass in between the redistributions
tmp
=
dobj
.
redistribute
(
x
.
val
,
nodist
=
axes
)
newax
=
dobj
.
distaxis
(
tmp
)
ldat
=
dobj
.
local_data
(
tmp
)
ldat
=
utilities
.
hartley
(
ldat
,
axes
=
axes
)
ldat
=
func
(
ldat
,
axes
=
axes
)
tmp
=
dobj
.
from_local_data
(
tmp
.
shape
,
ldat
,
distaxis
=
newax
)
tmp
=
dobj
.
redistribute
(
tmp
,
dist
=
oldax
)
else
:
# two separate, full FFTs needed
# ideal strategy for the moment would be:
# - do real-to-complex FFT on all local axes
# - fill up array
# - redistribute array
# - do complex-to-complex FFT on remaining axis
# - add re+im
# - redistribute back
else
:
# two separate FFTs needed
rem_axes
=
tuple
(
i
for
i
in
axes
if
i
!=
oldax
)
tmp
=
x
.
val
ldat
=
dobj
.
local_data
(
tmp
)
ldat
=
utilities
.
my_fftn_r2
c
(
ldat
,
axes
=
rem_axes
)
ldat
=
fun
c
(
ldat
,
axes
=
rem_axes
)
if
oldax
!=
0
:
raise
ValueError
(
"bad distribution"
)
ldat2
=
ldat
.
reshape
((
ldat
.
shape
[
0
],
...
...
@@ -110,17 +104,16 @@ class FFTOperator(LinearOperator):
tmp
=
dobj
.
from_local_data
(
shp2d
,
ldat2
,
distaxis
=
0
)
tmp
=
dobj
.
transpose
(
tmp
)
ldat2
=
dobj
.
local_data
(
tmp
)
ldat2
=
utilities
.
my_fftn
(
ldat2
,
axes
=
(
1
,))
ldat2
=
ldat2
.
real
+
ldat2
.
imag
ldat2
=
func
(
ldat2
,
axes
=
(
1
,))
tmp
=
dobj
.
from_local_data
(
tmp
.
shape
,
ldat2
,
distaxis
=
0
)
tmp
=
dobj
.
transpose
(
tmp
)
ldat2
=
dobj
.
local_data
(
tmp
).
reshape
(
ldat
.
shape
)
tmp
=
dobj
.
from_local_data
(
x
.
val
.
shape
,
ldat2
,
distaxis
=
0
)
Tval
=
Field
(
tdom
,
tmp
)
if
mode
&
(
LinearOperator
.
TIMES
|
LinearOperator
.
ADJOINT_TIMES
):
fct
=
self
.
_domain
[
self
.
_space
].
scalar_dvol
fct
*
=
self
.
_domain
[
self
.
_space
].
scalar_dvol
else
:
fct
=
self
.
_target
[
self
.
_space
].
scalar_dvol
fct
*
=
self
.
_target
[
self
.
_space
].
scalar_dvol
return
Tval
if
fct
==
1
else
Tval
*
fct
@
property
...
...
test/test_operators/test_fft_operator.py
View file @
175a8a95
...
...
@@ -36,14 +36,15 @@ def _get_rtol(tp):
class
FFTOperatorTests
(
unittest
.
TestCase
):
@
expand
(
product
([
16
,
],
[
0.1
,
1
,
3.7
],
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
]))
def
test_fft1D
(
self
,
dim1
,
d
,
itp
):
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
],
[
ift
.
HartleyOperator
,
ift
.
FFTOperator
]))
def
test_fft1D
(
self
,
dim1
,
d
,
itp
,
op
):
tol
=
_get_rtol
(
itp
)
a
=
ift
.
RGSpace
(
dim1
,
distances
=
d
)
b
=
ift
.
RGSpace
(
dim1
,
distances
=
1.
/
(
dim1
*
d
),
harmonic
=
True
)
np
.
random
.
seed
(
16
)
fft
=
ift
.
FFTOperator
(
domain
=
a
,
target
=
b
)
fft
=
op
(
domain
=
a
,
target
=
b
)
inp
=
ift
.
Field
.
from_random
(
domain
=
a
,
random_type
=
'normal'
,
std
=
7
,
mean
=
3
,
dtype
=
itp
)
out
=
fft
.
inverse_times
(
fft
.
times
(
inp
))
...
...
@@ -59,14 +60,15 @@ class FFTOperatorTests(unittest.TestCase):
@
expand
(
product
([
12
,
15
],
[
9
,
12
],
[
0.1
,
1
,
3.7
],
[
0.4
,
1
,
2.7
],
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
]))
def
test_fft2D
(
self
,
dim1
,
dim2
,
d1
,
d2
,
itp
):
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
],
[
ift
.
HartleyOperator
,
ift
.
FFTOperator
]))
def
test_fft2D
(
self
,
dim1
,
dim2
,
d1
,
d2
,
itp
,
op
):
tol
=
_get_rtol
(
itp
)
a
=
ift
.
RGSpace
([
dim1
,
dim2
],
distances
=
[
d1
,
d2
])
b
=
ift
.
RGSpace
([
dim1
,
dim2
],
distances
=
[
1.
/
(
dim1
*
d1
),
1.
/
(
dim2
*
d2
)],
harmonic
=
True
)
fft
=
ift
.
FFTOperator
(
domain
=
a
,
target
=
b
)
fft
=
op
(
domain
=
a
,
target
=
b
)
inp
=
ift
.
Field
.
from_random
(
domain
=
a
,
random_type
=
'normal'
,
std
=
7
,
mean
=
3
,
dtype
=
itp
)
out
=
fft
.
inverse_times
(
fft
.
times
(
inp
))
...
...
@@ -81,12 +83,13 @@ class FFTOperatorTests(unittest.TestCase):
assert_allclose
(
inp
.
local_data
,
out
.
local_data
,
rtol
=
tol
,
atol
=
tol
)
@
expand
(
product
([
0
,
1
,
2
],
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
]))
def
test_composed_fft
(
self
,
index
,
dtype
):
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
],
[
ift
.
HartleyOperator
,
ift
.
FFTOperator
]))
def
test_composed_fft
(
self
,
index
,
dtype
,
op
):
tol
=
_get_rtol
(
dtype
)
a
=
[
a1
,
a2
,
a3
]
=
[
ift
.
RGSpace
((
32
,)),
ift
.
RGSpace
((
4
,
4
)),
ift
.
RGSpace
((
5
,
6
))]
fft
=
ift
.
FFTOperator
(
domain
=
a
,
space
=
index
)
fft
=
op
(
domain
=
a
,
space
=
index
)
inp
=
ift
.
Field
.
from_random
(
domain
=
(
a1
,
a2
,
a3
),
random_type
=
'normal'
,
std
=
7
,
mean
=
3
,
dtype
=
dtype
)
...
...
@@ -96,15 +99,16 @@ class FFTOperatorTests(unittest.TestCase):
@
expand
(
product
([
ift
.
RGSpace
(
128
,
distances
=
3.76
,
harmonic
=
True
),
ift
.
RGSpace
((
15
,
27
),
distances
=
(.
7
,
.
33
),
harmonic
=
True
),
ift
.
RGSpace
(
73
,
distances
=
0.5643
)],
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
]))
def
test_normalisation
(
self
,
space
,
tp
):
[
np
.
float64
,
np
.
float32
,
np
.
complex64
,
np
.
complex128
],
[
ift
.
HartleyOperator
,
ift
.
FFTOperator
]))
def
test_normalisation
(
self
,
space
,
tp
,
op
):
tol
=
10
*
_get_rtol
(
tp
)
cospace
=
space
.
get_default_codomain
()
fft
=
ift
.
FFTOperator
(
space
,
cospace
)
fft
=
op
(
space
,
cospace
)
inp
=
ift
.
Field
.
from_random
(
domain
=
space
,
random_type
=
'normal'
,
std
=
1
,
mean
=
2
,
dtype
=
tp
)
out
=
fft
.
times
(
inp
)
fft2
=
ift
.
FFTOperator
(
cospace
,
space
)
fft2
=
op
(
cospace
,
space
)
out2
=
fft2
.
inverse_times
(
inp
)
zero_idx
=
tuple
([
0
]
*
len
(
space
.
shape
))
assert_allclose
(
inp
.
to_global_data
()[
zero_idx
],
out
.
integrate
(),
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment