Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
NIFTy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ift
NIFTy
Commits
f099ab83
Commit
f099ab83
authored
6 years ago
by
Martin Reinecke
Browse files
Options
Downloads
Patches
Plain Diff
add missing file
parent
0f88177b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
nifty5/operators/hartley_operator.py
+136
-0
136 additions, 0 deletions
nifty5/operators/hartley_operator.py
with
136 additions
and
0 deletions
nifty5/operators/hartley_operator.py
0 → 100644
+
136
−
0
View file @
f099ab83
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
from
__future__
import
absolute_import
,
division
,
print_function
import
numpy
as
np
from
..
import
dobj
,
utilities
from
..compat
import
*
from
..domain_tuple
import
DomainTuple
from
..domains.rg_space
import
RGSpace
from
..field
import
Field
from
.linear_operator
import
LinearOperator
class
HartleyOperator
(
LinearOperator
):
"""
Transforms between a pair of position and harmonic RGSpaces.
Parameters
----------
domain: Domain, tuple of Domain or DomainTuple
The domain of the data that is input by
"
times
"
and output by
"
adjoint_times
"
.
target: Domain, optional
The target (sub-)domain of the transform operation.
If omitted, a domain will be chosen automatically.
space: int, optional
The index of the subdomain on which the operator should act
If None, it is set to 0 if `domain` contains exactly one space.
`domain[space]` must be an RGSpace.
"""
def
__init__
(
self
,
domain
,
target
=
None
,
space
=
None
):
super
(
HartleyOperator
,
self
).
__init__
()
# Initialize domain and target
self
.
_domain
=
DomainTuple
.
make
(
domain
)
self
.
_space
=
utilities
.
infer_space
(
self
.
_domain
,
space
)
adom
=
self
.
_domain
[
self
.
_space
]
if
not
isinstance
(
adom
,
RGSpace
):
raise
TypeError
(
"
HartleyOperator only works on RGSpaces
"
)
if
target
is
None
:
target
=
adom
.
get_default_codomain
()
self
.
_target
=
[
dom
for
dom
in
self
.
_domain
]
self
.
_target
[
self
.
_space
]
=
target
self
.
_target
=
DomainTuple
.
make
(
self
.
_target
)
adom
.
check_codomain
(
target
)
target
.
check_codomain
(
adom
)
utilities
.
fft_prep
()
def
apply
(
self
,
x
,
mode
):
self
.
_check_input
(
x
,
mode
)
if
np
.
issubdtype
(
x
.
dtype
,
np
.
complexfloating
):
return
(
self
.
_apply_cartesian
(
x
.
real
,
mode
)
+
1j
*
self
.
_apply_cartesian
(
x
.
imag
,
mode
))
else
:
return
self
.
_apply_cartesian
(
x
,
mode
)
def
_apply_cartesian
(
self
,
x
,
mode
):
axes
=
x
.
domain
.
axes
[
self
.
_space
]
tdom
=
self
.
_tgt
(
mode
)
oldax
=
dobj
.
distaxis
(
x
.
val
)
if
oldax
not
in
axes
:
# straightforward, no redistribution needed
ldat
=
x
.
local_data
ldat
=
utilities
.
hartley
(
ldat
,
axes
=
axes
)
tmp
=
dobj
.
from_local_data
(
x
.
val
.
shape
,
ldat
,
distaxis
=
oldax
)
elif
len
(
axes
)
<
len
(
x
.
shape
)
or
len
(
axes
)
==
1
:
# we can use one Hartley pass in between the redistributions
tmp
=
dobj
.
redistribute
(
x
.
val
,
nodist
=
axes
)
newax
=
dobj
.
distaxis
(
tmp
)
ldat
=
dobj
.
local_data
(
tmp
)
ldat
=
utilities
.
hartley
(
ldat
,
axes
=
axes
)
tmp
=
dobj
.
from_local_data
(
tmp
.
shape
,
ldat
,
distaxis
=
newax
)
tmp
=
dobj
.
redistribute
(
tmp
,
dist
=
oldax
)
else
:
# two separate, full FFTs needed
# ideal strategy for the moment would be:
# - do real-to-complex FFT on all local axes
# - fill up array
# - redistribute array
# - do complex-to-complex FFT on remaining axis
# - add re+im
# - redistribute back
rem_axes
=
tuple
(
i
for
i
in
axes
if
i
!=
oldax
)
tmp
=
x
.
val
ldat
=
dobj
.
local_data
(
tmp
)
ldat
=
utilities
.
my_fftn_r2c
(
ldat
,
axes
=
rem_axes
)
if
oldax
!=
0
:
raise
ValueError
(
"
bad distribution
"
)
ldat2
=
ldat
.
reshape
((
ldat
.
shape
[
0
],
np
.
prod
(
ldat
.
shape
[
1
:])))
shp2d
=
(
x
.
val
.
shape
[
0
],
np
.
prod
(
x
.
val
.
shape
[
1
:]))
tmp
=
dobj
.
from_local_data
(
shp2d
,
ldat2
,
distaxis
=
0
)
tmp
=
dobj
.
transpose
(
tmp
)
ldat2
=
dobj
.
local_data
(
tmp
)
ldat2
=
utilities
.
my_fftn
(
ldat2
,
axes
=
(
1
,))
ldat2
=
ldat2
.
real
+
ldat2
.
imag
tmp
=
dobj
.
from_local_data
(
tmp
.
shape
,
ldat2
,
distaxis
=
0
)
tmp
=
dobj
.
transpose
(
tmp
)
ldat2
=
dobj
.
local_data
(
tmp
).
reshape
(
ldat
.
shape
)
tmp
=
dobj
.
from_local_data
(
x
.
val
.
shape
,
ldat2
,
distaxis
=
0
)
Tval
=
Field
(
tdom
,
tmp
)
if
mode
&
(
LinearOperator
.
TIMES
|
LinearOperator
.
ADJOINT_TIMES
):
fct
=
self
.
_domain
[
self
.
_space
].
scalar_dvol
else
:
fct
=
self
.
_target
[
self
.
_space
].
scalar_dvol
return
Tval
if
fct
==
1
else
Tval
*
fct
@property
def
domain
(
self
):
return
self
.
_domain
@property
def
target
(
self
):
return
self
.
_target
@property
def
capability
(
self
):
return
self
.
_all_ops
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment