Skip to content
Snippets Groups Projects
Commit ae403871 authored by RealPolitiX's avatar RealPolitiX
Browse files

Update with mpes-parser content

parent 6744335e
No related branches found
No related tags found
No related merge requests found
# Copyright 2016-2018 Markus Scheidgen
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path
import json
import ase
import re
import numpy as np
from datetime import datetime
from nomadcore.simple_parser import SimpleMatcher
from nomadcore.baseclasses import ParserInterface, AbstractBaseParser
from nomad.parsing import LocalBackend
class MPESParserInterface(ParserInterface):
def get_metainfo_filename(self):
"""
The parser specific metainfo. To include other metadata definitions, use
the 'dependencies' key to refer to other local nomadmetainfo.json files or
to nomadmetainfo.json files that are part of the general nomad-meta-info
submodule (i.e. ``dependencies/nomad-meta-info``).
"""
return os.path.join(os.path.dirname(__file__), 'mpes.nomadmetainfo.json')
def get_parser_info(self):
""" Basic info about parser used in archive data and logs. """
return {
'name': 'mpes-parser',
'version': '1.0.0'
}
def setup_version(self):
""" Can be used to call :func:`setup_main_parser` differently for different code versions. """
self.setup_main_parser(None)
def setup_main_parser(self, _):
""" Setup the actual parser (behind this interface) """
self.main_parser = MPESParser(self.parser_context)
class MPESParser(AbstractBaseParser):
def parse(self, filepath):
backend = self.parser_context.super_backend
with open(filepath, 'rt') as f:
data = json.load(f)
# print(data)
# # You need to open sections before you can add values or sub sections to it.
# # The returned 'gid' can be used to reference a specific section if multiple
# # sections of the same type are opened.
root_gid = backend.openSection('section_experiment')
# # Values do not necessarely have to be read from the parsed file.
# # The backend will check the type of the given value agains the metadata definition.
# backend.addValue('experiment_time', int(datetime.strptime(data.get('date'), '%d.%M.%Y').timestamp()))
#
# # Read data .
# data_gid = backend.openSection('section_data')
# backend.addValue('data_repository_name', 'zenodo.org')
# backend.addValue('data_repository_url', 'https://zenodo.org/path/to/mydata')
# backend.addValue('data_preview_url', 'https://www.physicsforums.com/insights/wp-content/uploads/2015/09/fem.jpg')
# backend.closeSection('section_data', data_gid)
# Read general experimental parameters
# general_gid = backend.openSection('section_experiment_general_parameters')
backend.addValue('general_experiment_method', data.get('experiment_method'))
backend.addValue('general_experiment_method_abbreviation', data.get('experiment_method_abbrv'))
backend.addArrayValues('general_experiment_location', np.array(re.findall(r"[\w']+", data.get('experiment_location'))))
backend.addValue('general_experiment_date', data.get('experiment_date'))
backend.addValue('general_experiment_summary', data.get('experiment_summary'))
backend.addValue('general_experiment_facility_institution', data.get('facility_institution'))
backend.addValue('general_experiment_facility_name', data.get('facility_name'))
backend.addValue('general_beamline', data.get('beamline'))
backend.addValue('general_source_pump', data.get('source_pump'))
backend.addValue('general_source_probe', data.get('source_probe'))
backend.addValue('general_equipment_description', data.get('equipment_description'))
backend.addValue('general_sample_description', data.get('sample_description'))
backend.addArrayValues('general_measurement_axis', np.array(re.findall(r"[\w']+", data.get('measurement_axis'))))
backend.addArrayValues('general_physical_axis', np.array(re.findall(r"[\w']+", data.get('physical_axis'))))
# Read parameters related to experimental source
# source_gid = backend.openSection('section_experiment_source_parameters')
backend.addValue('source_pump_repetition_rate', data.get('pump_rep_rate'))
backend.addValue('source_pump_pulse_duration', data.get('pump_pulse_duration'))
backend.addValue('source_pump_wavelength', data.get('pump_wavelength'))
backend.addArrayValues('source_pump_spectrum', np.array(data.get('pump_spectrum')))
backend.addValue('source_pump_photon_energy', data.get('pump_photon_energy'))
backend.addArrayValues('source_pump_size', np.array(data.get('pump_size')))
backend.addArrayValues('source_pump_fluence', np.array(data.get('pump_fluence')))
backend.addValue('source_pump_polarization', data.get('pump_polarization'))
backend.addValue('source_pump_bunch', data.get('pump_bunch'))
backend.addValue('source_probe_repetition_rate', data.get('probe_rep_rate'))
backend.addValue('source_probe_pulse_duration', data.get('probe_pulse_duration'))
backend.addValue('source_probe_wavelength', data.get('probe_wavelength'))
backend.addArrayValues('source_probe_spectrum', np.array(data.get('probe_spectrum')))
backend.addValue('source_probe_photon_energy', data.get('probe_photon_energy'))
backend.addArrayValues('source_probe_size', np.array(data.get('probe_size')))
backend.addArrayValues('source_probe_fluence', np.array(data.get('probe_fluence')))
backend.addValue('source_probe_polarization', data.get('probe_polarization'))
backend.addValue('source_probe_bunch', data.get('probe_bunch'))
backend.addValue('source_temporal_resolution', data.get('temporal_resolution'))
# Read parameters related to detector
# detector_gid = backend.openSection('section_experiment_detector_parameters')
backend.addValue('detector_extractor_voltage', data.get('extractor_voltage'))
backend.addValue('detector_work_distance', data.get('work_distance'))
backend.addArrayValues('detector_lens_names', np.array(re.findall(r"[\w']+", data.get('lens_names'))))
backend.addArrayValues('detector_lens_voltages', np.array(data.get('lens_voltages')))
backend.addValue('detector_tof_distance', data.get('tof_distance'))
backend.addArrayValues('detector_tof_voltages', np.array(data.get('tof_voltages')))
backend.addValue('detector_sample_bias', data.get('sample_bias'))
backend.addValue('detector_magnification', data.get('magnification'))
backend.addArrayValues('detector_voltages', np.array(data.get('detector_voltages')))
backend.addValue('detector_type', data.get('detector_type'))
backend.addArrayValues('detector_sensor_size', np.array(data.get('sensor_size')))
backend.addValue('detector_sensor_count', data.get('sensor_count'))
backend.addArrayValues('detector_sensor_pixel_size', np.array(data.get('sensor_pixel_size')))
backend.addArrayValues('detector_calibration_x_to_momentum', np.array(data.get('calibration_x_to_momentum')))
backend.addArrayValues('detector_calibration_y_to_momentum', np.array(data.get('calibration_y_to_momentum')))
backend.addArrayValues('detector_calibration_tof_to_energy', np.array(data.get('calibration_tof_to_energy')))
backend.addArrayValues('detector_calibration_stage_to_delay', np.array(data.get('calibration_stage_to_delay')))
backend.addArrayValues('detector_calibration_other_converts', np.array(data.get('calibration_other_converts')))
backend.addArrayValues('detector_momentum_resolution', np.array(data.get('momentum_resolution')))
backend.addArrayValues('detector_spatial_resolution', np.array(data.get('spatial_resolution')))
backend.addArrayValues('detector_energy_resolution', np.array(data.get('energy_resolution')))
# Read parameters related to sample
# sample_gid = backend.openSection('section_experiment_sample_parameters')
backend.addValue('sample_id', data.get('sample_id'))
backend.addValue('sample_state_of_matter', data.get('sample_state'))
backend.addValue('sample_purity', data.get('sample_purity'))
backend.addValue('sample_surface_termination', data.get('sample_surface_termination'))
backend.addValue('sample_layers', data.get('sample_layers'))
backend.addValue('sample_stacking_order', data.get('sample_stacking_order'))
backend.addValue('sample_space_group', data.get('sample_space_group'))
backend.addValue('sample_chemical_name', data.get('chemical_name'))
backend.addValue('sample_chemical_formula', data.get('chemical_formula'))
# backend.addArrayValues('sample_chemical_elements', np.array(re.findall(r"[\w']+", data.get('chemical_elements'))))
atoms = set(ase.Atoms(data.get('chemical_formula')).get_chemical_symbols())
backend.addArrayValues('sample_atom_labels', np.array(list(atoms)))
backend.addValue('sample_chemical_id_cas', data.get('chemical_id_cas'))
backend.addValue('sample_temperature', data.get('sample_temperature'))
backend.addValue('sample_pressure', data.get('sample_pressure'))
backend.addValue('sample_growth_method', data.get('growth_method'))
backend.addValue('sample_preparation_method', data.get('preparation_method'))
backend.addValue('sample_vendor', data.get('sample_vendor'))
backend.addValue('sample_substrate_material', data.get('substrate_material'))
backend.addValue('sample_substrate_state_of_matter', data.get('substrate_state'))
backend.addValue('sample_substrate_vendor', data.get('substrate_vendor'))
# To add arrays (vectors, matrices, etc.) use addArrayValues and provide a
# numpy array. The shape of the numpy array must match the shape defined in
# the respective metadata definition.
# Close sections in the reverse order
# backend.closeSection('section_data', data_gid)
backend.closeSection('section_experiment', root_gid)
# backend.closeSection('section_experiment_general_parameters', general_gid)
# backend.closeSection('section_experiment_source_parameters', source_gid)
# backend.closeSection('section_experiment_detector_parameters', detector_gid)
# backend.closeSection('section_experiment_sample_parameters', sample_gid)
......@@ -14,11 +14,11 @@
import sys
from nomad.parsing import LocalBackend
from skeletonparser import SkeletonParserInterface
from mpesparser import MPESParserInterface
if __name__ == "__main__":
# instantiate the parser via its interface with a LocalBackend
parser = SkeletonParserInterface(backend=LocalBackend)
parser = MPESParserInterface(backend=LocalBackend)
# call the actual parsing with the given mainfile
parser.parse(sys.argv[1])
# print the results stored in the LocalBackend
......
{
"type": "nomad_meta_info_1_0",
"description": "Metadata a multidimensional photoemission spectroscopy experiment.",
"dependencies": [
{
"metainfoPath":"general.nomadmetainfo.json"
},
{
"metainfoPath":"general.experimental.nomadmetainfo.json"
}
],
"metaInfos": [
{
"description": "Name of the city and country the experiment took place, format 'Country, City'",
"name": "data_repository_name",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the city and country the experiment took place, format 'Country, City'",
"name": "data_repository_url",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the city and country the experiment took place, format 'Country, City'",
"name": "data_preview_url",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Shape of the None/Null object",
"name": "none_shape",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Full name of the experimental method in use",
"name": "general_experiment_method",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Abbreviated name (e.g. acronym) of the experimental method",
"name": "general_experiment_method_abbreviation",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Number of name segments in the experiment location",
"name": "number_of_location_names",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Name of the city and country the experiment took place, format 'Country, City'",
"name": "general_experiment_location",
"dtypeStr": "C",
"shape": ["number_of_location_names"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Start and end dates of the experiment, format 'DD.MM.YYYY - DD.MM.YYYY'",
"name": "general_experiment_date",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": "C"
},
{
"description": "Descriptive summary of the content of the experiment.",
"name": "general_experiment_summary",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the institution hosting the experimental facility (e.g. in an acronym).",
"name": "general_experiment_facility_institution",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the experimental facility (e.g. in an acronym).",
"name": "general_experiment_facility_name",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the beamline the experiment took place.",
"name": "general_beamline",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name or model of the pump light source.",
"name": "general_source_pump",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name or model of the probe light source.",
"name": "general_source_probe",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name or model of the equipment (e.g. in an acronym).",
"name": "general_equipment_description",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Description of the sample used in the experiment.",
"name": "general_sample_description",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Number of axes in the measurement hardware.",
"name": "number_of_axes",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Names of the axes in the measurement hardware.",
"name": "general_measurement_axis",
"dtypeStr": "C",
"shape": ["number_of_axes"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Names of the axes in physical terms.",
"name": "general_physical_axis",
"dtypeStr": "C",
"shape": ["number_of_axes"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Repetition rate of the pump source.",
"name": "source_pump_repetition_rate",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "Hz"
},
{
"description": "Pulse duration of the pump source.",
"name": "source_pump_pulse_duration",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "fs"
},
{
"description": "Center wavelength of the pump source.",
"name": "source_pump_wavelength",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "nm"
},
{
"description": "Spectrum of the pump source.",
"name": "source_pump_spectrum",
"dtypeStr": "f",
"shape": ["length_of_spectrum"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Photon energy of the pump source.",
"name": "source_pump_photon_energy",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "eV"
},
{
"description": "Full-width at half-maximum size of the pump source at or closest to the sample position.",
"name": "source_pump_size",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "mm**2"
},
{
"description": "Fluence of the pump source at or closest to the sample position.",
"name": "source_pump_fluence",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "mJ/mm**2"
},
{
"description": "Polarization of the pump source.",
"name": "source_pump_polarization",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Total bunch number of the pump source.",
"name": "source_pump_bunch",
"dtypeStr": "i",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Repetition rate of the probe source.",
"name": "source_probe_repetition_rate",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "Hz"
},
{
"description": "Pulse duration of the probe source.",
"name": "source_probe_pulse_duration",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "fs"
},
{
"description": "Center wavelength of the probe source.",
"name": "source_probe_wavelength",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "nm"
},
{
"description": "Number of pixel elements in the spectrum.",
"name": "length_of_spectrum",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Spectrum of the probe source.",
"name": "source_probe_spectrum",
"dtypeStr": "f",
"shape": ["length_of_spectrum"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Photon energy of the probe source.",
"name": "source_probe_photon_energy",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "eV"
},
{
"description": "Full-width at half-maximum size of the probe source at or closest to the sample position.",
"name": "source_probe_size",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "mm**2"
},
{
"description": "Fluence of the probe source at or closest to the sample position.",
"name": "source_probe_fluence",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "mJ/mm**2"
},
{
"description": "Polarization of the probe source.",
"name": "source_probe_polarization",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Total bunch number of the probe source.",
"name": "source_probe_bunch",
"dtypeStr": "i",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Full-width at half-maximum of the pump-probe cross-correlation function.",
"name": "source_temporal_resolution",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "fs"
},
{
"description": "Voltage between the extractor and the sample.",
"name": "detector_extractor_voltage",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "V"
},
{
"description": "Distance between the sample and the detector entrance.",
"name": "detector_work_distance",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "mm"
},
{
"description": "Number of electron lenses in the electron detector.",
"name": "number_of_lenses",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Set of names for the electron-optic lenses.",
"name": "detector_lens_names",
"dtypeStr": "C",
"shape": ["number_of_lenses"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Set of electron-optic lens voltages.",
"name": "detector_lens_voltages",
"dtypeStr": "f",
"shape": ["number_of_lenses"],
"superNames": ["section_experiment"],
"units": "V"
},
{
"description": "Drift distance of the time-of-flight tube.",
"name": "detector_tof_distance",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "m"
},
{
"description": "Number of time-of-flight (TOF) drift tube voltage values in the electron detector.",
"name": "number_of_tof_voltages",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Voltage applied to the time-of-flight tube.",
"name": "detector_tof_voltages",
"dtypeStr": "f",
"shape": ["number_of_tof_voltages"],
"superNames": ["section_experiment"],
"units": "V"
},
{
"description": "Voltage bias applied to sample.",
"name": "detector_sample_bias",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "V"
},
{
"description": "Detector magnification.",
"name": "detector_magnification",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Number of detector voltage settings in the electron detector.",
"name": "number_of_detector_voltages",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Voltage applied to detector.",
"name": "detector_voltages",
"dtypeStr": "f",
"shape": ["number_of_detector_voltages"],
"superNames": ["section_experiment"],
"units": "V"
},
{
"description": "Description of the detector type (e.g. ‘MCP’, ‘CCD’, ‘CMOS’, etc.).",
"name": "detector_type",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Number of detector sensor size dimensions (depending on the number of sensors).",
"name": "number_of_sensor_sizes",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Size of each of the imaging sensor chip on the detector.",
"name": "detector_sensor_size",
"dtypeStr": "f",
"shape": ["number_of_sensor_sizes"],
"superNames": ["section_experiment"],
"units": "mm"
},
{
"description": "Number of imaging sensor chips on the detector.",
"name": "detector_sensor_count",
"dtypeStr": "i",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Pixel size of the imaging sensor chip on the detector.",
"name": "detector_sensor_pixel_size",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "um"
},
{
"description": "Number of the momentum calibration parameters for the detector.",
"name": "number_of_momentum_calibration_coefficients",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Pixel x axis to kx momentum calibration.",
"name": "detector_calibration_x_to_momentum",
"dtypeStr": "f",
"shape": ["number_of_momentum_calibration_coefficients"],
"superNames": ["section_experiment"],
"units": "AA**-1"
},
{
"description": "Pixel y axis to ky momentum calibration.",
"name": "detector_calibration_y_to_momentum",
"dtypeStr": "f",
"shape": ["number_of_momentum_calibration_coefficients"],
"superNames": ["section_experiment"],
"units": "AA**-1"
},
{
"description": "Number of the energy calibration parameters for the detector.",
"name": "number_of_energy_calibration_coefficients",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Time-of-flight to energy calibration.",
"name": "detector_calibration_tof_to_energy",
"dtypeStr": "f",
"shape": ["number_of_energy_calibration_coefficients"],
"superNames": ["section_experiment"],
"units": "eV"
},
{
"description": "Translation stage delay to pump-probe delay calibration.",
"name": "detector_calibration_stage_to_delay",
"dtypeStr": "f",
"shape": ["number_of_delay_calibration_coefficients"],
"superNames": ["section_experiment"],
"units": "fs"
},
{
"description": "Number of the other calibration parameters for the detector.",
"name": "number_of_other_calibration_coefficients",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Conversion factor between other measured and physical axes.",
"name": "detector_calibration_other_converts",
"dtypeStr": "f",
"shape": ["number_of_other_calibration_coefficients"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Momentum resolution of the detector.",
"name": "detector_momentum_resolution",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "AA**-1"
},
{
"description": "Spatial resolution of the source.",
"name": "detector_spatial_resolution",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "um"
},
{
"description": "Energy resolution of the detector.",
"name": "detector_energy_resolution",
"dtypeStr": "f",
"shape": ["none_shape"],
"superNames": ["section_experiment"],
"units": "eV"
},
{
"description": "Identification number or signatures of the sample used.",
"name": "sample_id",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Physical state of the sample.",
"name": "sample_state_of_matter",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Chemical purity of the sample.",
"name": "sample_purity",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Surface termination of the sample (if crystalline).",
"name": "sample_surface_termination",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Sample layer or bulk structure.",
"name": "sample_layers",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Stacking order of the solid surface (if crystalline).",
"name": "sample_stacking_order",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Space group of the sample compound (if crystalline).",
"name": "sample_space_group",
"dtypeStr": "i",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Chemical name of the sample.",
"name": "sample_chemical_name",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Chemical formula of the sample.",
"name": "sample_chemical_formula",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Number of distinct chemical elements in the sample.",
"name": "number_of_elements",
"dtypeStr": "i",
"kindStr": "type_dimension",
"shape": [],
"superNames": ["section_experiment"]
},
{
"description": "Symbols of the chemical elements contained in the sample.",
"name": "sample_atom_labels",
"dtypeStr": "C",
"shape": ["number_of_elements"],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "CAS registry number of the sample’s chemical content.",
"name": "sample_chemical_id_cas",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Temperature of the sample at the time of measurement.",
"name": "sample_temperature",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "K"
},
{
"description": "Pressure surrounding the sample at the time of measurement.",
"name": "sample_pressure",
"dtypeStr": "f",
"shape": [],
"superNames": ["section_experiment"],
"units": "Pa"
},
{
"description": "Sample growth method.",
"name": "sample_growth_method",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Sample preparation method.",
"name": "sample_preparation_method",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the sample vendor.",
"name": "sample_vendor",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Material of the substrate the sample has immediate contact with.",
"name": "sample_substrate_material",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "State of matter of the substrate material.",
"name": "sample_substrate_state_of_matter",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
},
{
"description": "Name of the substrate vendor.",
"name": "sample_substrate_vendor",
"dtypeStr": "C",
"shape": [],
"superNames": ["section_experiment"],
"units": ""
}
]
}
......@@ -16,14 +16,14 @@ from setuptools import setup, find_packages
def main():
setup(
name='skeletonparser', # replace with new name for parser's python package
name='mpesparser',
version='0.1',
description='A skeleton NOMAD parser implementation.', # change accordingly
author='', # add your names
description='NOMAD parser implementation for multidimensional photoemission spectroscopy data.',
author='R. Patrick Xian',
license='APACHE 2.0',
packages=find_packages(),
package_data={
'skeletonparser': ['*.json']
'mpesparser': ['*.json']
},
install_requires=[
'nomadcore'
......
# Copyright 2016-2018 Markus Scheidgen
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os.path
import json
import ase
import numpy as np
from datetime import datetime
from nomadcore.simple_parser import SimpleMatcher
from nomadcore.baseclasses import ParserInterface, AbstractBaseParser
from nomad.parsing import LocalBackend
class SkeletonParserInterface(ParserInterface):
def get_metainfo_filename(self):
"""
The parser specific metainfo. To include other metadata definitions, use
the 'dependencies' key to refer to other local nomadmetainfo.json files or
to nomadmetainfo.json files that are part of the general nomad-meta-info
submodule (i.e. ``dependencies/nomad-meta-info``).
"""
return os.path.join(os.path.dirname(__file__), 'skeleton.nomadmetainfo.json')
def get_parser_info(self):
""" Basic info about parser used in archive data and logs. """
return {
'name': 'you parser name',
'version': '1.0.0'
}
def setup_version(self):
""" Can be used to call :func:`setup_main_parser` differently for different code versions. """
self.setup_main_parser(None)
def setup_main_parser(self, _):
""" Setup the actual parser (behind this interface) """
self.main_parser = SkeletonParser(self.parser_context)
class SkeletonParser(AbstractBaseParser):
def parse(self, filepath):
backend = self.parser_context.super_backend
with open(filepath, 'rt') as f:
data = json.load(f)
# You need to open sections before you can add values or sub sections to it.
# The returned 'gid' can be used to reference a specific section if multiple
# sections of the same type are opened.
root_gid = backend.openSection('section_experiment')
# Values are added to the open section of the given metadata definitions. In
# the following case 'experiment_location' is a quantity of 'section_experiment'.
# When multiple sections of the same type (e.g. 'section_experiment') are open,
# you can use the 'gid' as an additional argument.
backend.addValue('experiment_location', data.get('location'))
# Values do not necessarely have to be read from the parsed file.
backend.addValue('experiment_method_name', data.get('method', 'Bare eyes'))
# The backend will check the type of the given value agains the metadata definition.
backend.addValue('experiment_time', int(datetime.strptime(data.get('date'), '%d.%M.%Y').timestamp()))
# Subsections work like before. The parent section must still be open.
data_gid = backend.openSection('section_data')
backend.addValue('data_repository_name', 'zenedo.org')
backend.addValue('data_repository_url', 'https://zenedo.org/path/to/mydata')
backend.addValue('data_preview_url', 'https://www.physicsforums.com/insights/wp-content/uploads/2015/09/fem.jpg')
backend.closeSection('section_data', data_gid)
# Subsections work like before. The parent section must still be open.
sample_gid = backend.openSection('section_sample')
backend.addValue('sample_chemical_name', data.get('sample_chemical'))
backend.addValue('sample_chemical_formula', data.get('sample_formula'))
backend.addValue('sample_temperature', data.get('sample_temp'))
atoms = set(ase.Atoms(data.get('sample_formula')).get_chemical_symbols())
# To add arrays (vectors, matrices, etc.) use addArrayValues and provide a
# numpy array. The shape of the numpy array must match the shape defined in
# the respective metadata definition.
backend.addArrayValues('sample_atom_labels', np.array(list(atoms)))
# Close sections in the reverse order.
backend.closeSection('section_sample', sample_gid)
backend.closeSection('section_experiment', root_gid)
{
"type": "nomad_meta_info_1_0",
"description": "Parser specific metadata definitions.",
"dependencies":[
{
"metainfoPath":"general.nomadmetainfo.json"
},
{
"metainfoPath":"general.experimental.nomadmetainfo.json"
}
],
"metaInfos": [
{
"description": "Contains information relating to an archive.",
"name": "experiment_location",
"dtypeStr": "C",
"superNames": ["section_experiment"]
}
]
}
{
"type":"skeleton experimental metadata format 1.0",
"date":"24.12.2018",
"location":"Northpole",
"sample_formula":"H2O",
"sample_chemical":"Ice",
"sample_state":"Frozen",
"result":"https://bitcoinist.com/wp-content/uploads/2018/08/shutterstock_764225425.jpg",
"sample_temp":384
}
\ No newline at end of file
{"GeneralParameters":
{"experiment_location": "Hamburg, Germany",
"experiment_date": "04.2018 - 05.2018",
"experiment_summary": "Characterization of excited-state circular dichroism of WSe2",
"institution": "DESY",
"facility": "FLASH",
"beamline": "PG-2",
"source_pump": "Free electron laser",
"source_probe": "Femtosecond laser",
"equipment": "HEXTOF detector",
"sample": "Bulk tungsten diselenide",
"measurement_axis": ["X", "Y", "t", "ADC"],
"physical_axis": ["kx", "ky", "E", "tpp"]},
"SourceParameters":
{"pump_rep_rate": 1000,
"pump_pulse_duration": 100,
"pump_wavelength": 800,
"pump_spectrum": [],
"pump_photon_energy": 1.55,
"pump_size": "",
"pump_fluence": 1.5,
"pump_polarization": "linear",
"pump_bunch": 400,
"probe_rep_rate": 1000,
"probe_pulse_duration": 100,
"probe_wavelength": 800,
"probe_spectrum": [],
"probe_photon_energy": 109,
"probe_size": "",
"probe_fluence": "",
"probe_polarization": "circular",
"probe_bunch": 400,
"temporal_resolution": 100},
"DetectorParameters":
{"extractor_voltage": 6000,
"work_distance": 4,
"lens_names": ["A", "B", "C", "D", "E", "F", "G", "H"],
"lens_voltages": [],
"tof_distance": 0.9,
"tof_voltages": 30,
"sample_bias": 15,
"magnification": [],
"detector_voltage": [],
"detector_type": "MCP",
"sensor_size": [],
"sensor_count": 4,
"sensor_pixel_size": [],
"x_to_momentum": [],
"y_to_momentum": [],
"tof_to_energy": [],
"stage_to_delay": [],
"other_converts": [],
"momentum_resolution": 0.01,
"spatial_resolution": "",
"energy_resolution": ""},
"SampleParameters":
{"sample_id": "000",
"sample_state": "solid",
"sample_purity": 0.99,
"sample_surface_term": "",
"sample_layer": "bulk",
"sample_stacking": "2H",
"sample_space_group": 194,
"chem_formula": "WSe2",
"chem_elements": ["W", "Se"],
"chem_name": "tungsten diselenide",
"chem_id_cas": "12067-46-8",
"sample_temp": 300,
"sample_pressure": 1e-11,
"growth_method": "chemical vaport transport",
"preparation_method": "in-vacuum cleaving",
"sample_vendor": "HQ Graphene",
"substrate_material": "copper",
"substrate_state": "solid",
"substrate_vendor": "custom"
}
}
{
"experiment_method": "multidimensional photoemission spectroscopy",
"experiment_method_abbrv": "MPES",
"experiment_location": "Hamburg, Germany",
"experiment_date": "04.2018 05.2018",
"experiment_summary": "Characterization of excited-state circular dichroism of WSe2",
"facility_institution": "DESY",
"facility_name": "FLASH",
"beamline": "PG-2",
"source_pump": "Free electron laser",
"source_probe": "Femtosecond laser",
"equipment_description": "HEXTOF detector",
"sample_description": "Bulk tungsten diselenide",
"measurement_axis": "X, Y, TOF, ADC",
"physical_axis": "kx, ky, E, tpp",
"pump_rep_rate": 1000,
"pump_pulse_duration": 100,
"pump_wavelength": 800,
"pump_spectrum": [],
"pump_photon_energy": 1.55,
"pump_size": [],
"pump_fluence": [],
"pump_polarization": "linear",
"pump_bunch": 400,
"probe_rep_rate": 1000,
"probe_pulse_duration": 100,
"probe_wavelength": 800,
"probe_spectrum": [],
"probe_photon_energy": 36.4970,
"probe_size": [],
"probe_fluence": [],
"probe_polarization": "circular",
"probe_bunch": 400,
"temporal_resolution": 100,
"extractor_voltage": 6030,
"work_distance": 4,
"lens_names": "A, B, C, D, E, F, G, H, I",
"lens_voltages": [],
"tof_distance": 0.9,
"tof_voltages": [20],
"sample_bias": 29,
"magnification": [-1.5],
"detector_voltages": [],
"detector_type": "MCP",
"sensor_size": [],
"sensor_count": 4,
"sensor_pixel_size": [],
"calibration_x_to_momentum": [],
"calibration_y_to_momentum": [],
"calibration_tof_to_energy": [],
"calibration_stage_to_delay": [],
"calibration_other_converts": [],
"momentum_resolution": [0.01],
"spatial_resolution": [],
"energy_resolution": [],
"sample_id": "000",
"sample_state": "solid",
"sample_purity": 0.99,
"sample_surface_termination": "0001",
"sample_layers": "bulk",
"sample_stacking_order": "2H",
"sample_space_group": 194,
"chemical_name": "tungsten diselenide",
"chemical_formula": "WSe2",
"chemical_id_cas": "12067-46-8",
"sample_temperature": 300,
"sample_pressure": 3.85e-10,
"growth_method": "chemical vaport transport",
"preparation_method": "in-vacuum cleaving",
"sample_vendor": "HQ Graphene",
"substrate_material": "copper",
"substrate_state": "solid",
"substrate_vendor": "custom"
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment