Skip to content
Snippets Groups Projects
Commit 9a2c4b12 authored by Jan Janssen's avatar Jan Janssen
Browse files

add best potentials

parent c49f9639
No related branches found
No related tags found
No related merge requests found
#!/bin/bash
# pyiron config
python .ci_support/pyironconfig.py
# install
bash binder/postBuild
......
import os
def main():
current_path = os.path.abspath(os.path.curdir)
top_level_path = current_path.replace('\\', '/')
resource_path = os.path.join(current_path, "resources").replace('\\', '/')
pyiron_config = os.path.expanduser('~/.pyiron').replace('\\', '/')
if not os.path.exists(pyiron_config):
with open(pyiron_config, 'w') as f:
f.writelines(['[DEFAULT]\n',
'TOP_LEVEL_DIRS = ' + top_level_path + '\n',
'RESOURCE_PATHS = ' + resource_path + '\n'])
else:
print('config exists')
if __name__ == '__main__':
main()
This diff is collapsed.
This diff is collapsed.
,Config,Filename,Model,Name,Species,Citations
0,"['pair_style pace\n', 'pair_coeff * * df3_cut75_large_body_order.ace Cu\n']",['ace/df3_cut75_large_body_order.ace'],ACE,Cu-ace,['Cu'],{}
0,"['pair_style nnp dir ""."" showew no showewsum 0 resetew no maxew 100 cflength 1.8897261328 cfenergy 0.0367493254 emap ""1:Cu""\n', 'pair_coeff * * 12\n']","['runner/input.nn', 'runner/weights.029.data', 'runner/scaling.data']",RuNNer,Cu-runner,['Cu'],{}
### ####################################################################################################################
### This is the input file for the RuNNer tutorial (POTENTIALS WORKSHOP 2021-03-10)
### This input file is intended for release version 1.2
### RuNNer is hosted at www.gitlab.com. The most recent version can only be found in this repository.
### For access please contact Prof. Jörg Behler, joerg.behler@uni-goettingen.de
###
### ####################################################################################################################
### General remarks:
### - commands can be switched off by using the # character at the BEGINNING of the line
### - the input file can be structured by blank lines and comment lines
### - the order of the keywords is arbitrary
### - if keywords are missing, default values will be used and written to runner.out
### - if mandatory keywords or keyword options are missing, RuNNer will stop with an error message
###
########################################################################################################################
########################################################################################################################
### The following keywords just represent a subset of the keywords offered by RuNNer
########################################################################################################################
########################################################################################################################
########################################################################################################################
### general keywords
########################################################################################################################
nn_type_short 1 # 1=Behler-Parrinello
runner_mode 3 # 1=calculate symmetry functions, 2=fitting mode, 3=predicition mode
number_of_elements 1 # number of elements
elements Cu # specification of elements
random_seed 10 # integer seed for random number generator
random_number_type 6 # 6 recommended
########################################################################################################################
### NN structure of the short-range NN
########################################################################################################################
use_short_nn # use NN for short range interactions
global_hidden_layers_short 2 # number of hidden layers
global_nodes_short 15 15 # number of nodes in hidden layers
global_activation_short t t l # activation functions (t = hyperbolic tangent, l = linear)
########################################################################################################################
### symmetry function generation ( mode 1):
########################################################################################################################
test_fraction 0.10000 # threshold for splitting between fitting and test set
########################################################################################################################
### symmetry function definitions (all modes):
########################################################################################################################
cutoff_type 1
symfunction_short Cu 2 Cu 0.000000 0.000000 12.000000
symfunction_short Cu 2 Cu 0.006000 0.000000 12.000000
symfunction_short Cu 2 Cu 0.016000 0.000000 12.000000
symfunction_short Cu 2 Cu 0.040000 0.000000 12.000000
symfunction_short Cu 2 Cu 0.109000 0.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 1.000000 1.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 1.000000 2.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 1.000000 4.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 1.000000 16.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 1.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 2.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 4.000000 12.000000
symfunction_short Cu 3 Cu Cu 0.00000 -1.000000 16.000000 12.000000
########################################################################################################################
### fitting (mode 2):general inputs for short range AND electrostatic part:
########################################################################################################################
epochs 20 # number of epochs
fitting_unit eV # unit for error output in mode 2 (eV or Ha)
precondition_weights # optional precondition initial weights
########################################################################################################################
### fitting options ( mode 2): short range part only:
########################################################################################################################
short_energy_error_threshold 0.10000 # threshold of adaptive Kalman filter short E
short_force_error_threshold 1.00000 # threshold of adaptive Kalman filter short F
kalman_lambda_short 0.98000 # Kalman parameter short E/F, do not change
kalman_nue_short 0.99870 # Kalman parameter short E/F, do not change
use_short_forces # use forces for fitting
repeated_energy_update # optional: repeat energy update for each force update
mix_all_points # do not change
scale_symmetry_functions # optional
center_symmetry_functions # optional
short_force_fraction 0.01 #
force_update_scaling -1.0 #
########################################################################################################################
### output options for mode 2 (fitting):
########################################################################################################################
write_trainpoints # write trainpoints.out and testpoints.out files
write_trainforces # write trainforces.out and testforces.out files
########################################################################################################################
### output options for mode 3 (prediction):
########################################################################################################################
calculate_forces # calculate forces
calculate_stress # calculate stress tensor
1 1 14.256833324 19.604083786 16.584187995
1 2 10.772870436 14.917517522 12.575789477
1 3 7.067719199 9.940850811 8.325756144
1 4 3.063546892 4.514143322 3.699677080
1 5 0.443438674 0.840539370 0.611310762
1 6 11.372207256 23.338043099 16.099109800
1 7 30.908289966 62.610854904 43.470717798
1 8 4.747847116 10.201151151 6.890568480
1 9 24.299123692 49.473962957 34.262176478
1 10 1.690730707 3.912715044 2.559298728
1 11 16.549052901 34.322241783 23.555567314
1 12 0.252821214 0.820637834 0.460356083
1 13 4.065311900 9.687837138 6.245172716
-0.1359667057 -0.1284178204
0.0002929493
-0.6941954269
0.9059192336
-0.8539511180
0.6945597416
0.4158165063
-0.2203285181
-0.0468139145
0.4464672024
0.4146182872
-0.3380150711
0.1823814447
-0.3850976121
-0.6451795801
0.9100222759
0.1695670863
0.9610743963
-0.2710738436
-0.9187189953
-0.4209941537
0.3159901450
-0.5807968432
0.4037838756
-0.5755611410
0.0345929391
-1.0071075870
0.7881655380
-0.7353635404
-0.4519726848
-0.6846120126
-0.7739950144
0.6002150253
0.2877713394
-0.2472311317
-0.2638354273
-0.6882121053
0.7952962249
-0.2141858580
-0.2974177905
-0.8296260827
0.4039482533
0.8696835843
-0.5217230117
0.0610884548
-0.9143406316
-0.4548159822
-0.9098044897
0.1667283484
0.5111021091
0.7800678888
0.5494692376
-0.1488447687
-0.7703471814
-0.6034894622
-0.5957722003
-0.7020765696
-0.8808562031
0.6261094787
0.0724453439
0.6966501850
0.5010789743
-0.5777489975
-0.7439796706
0.8992219609
-0.6188936696
0.5704951193
0.0728913441
-0.7426060445
-0.8518844455
-0.4982094540
0.5946172110
-0.7218163160
0.1059872864
-0.5632129515
-0.4148453495
0.7770094203
0.3602930701
0.6914548497
0.7941781697
0.3868139218
-0.4315836970
-0.4347805324
-0.1596146352
-0.7872242593
-0.8954315132
-0.2058487886
0.4396848316
-0.9319795259
-0.4665903490
0.3735280586
0.5450969436
0.7004912972
-0.2913033525
-0.8192143373
0.8846068333
-0.8808933936
-0.3056738316
-0.2205490670
-0.2672502593
-0.3916647774
0.4481317701
0.5323756071
-0.8624885823
-0.2318618712
0.3939941528
-0.0050523244
0.7052520989
-0.3702774623
0.9363049639
0.1938345938
-0.3185875658
-0.8627965597
-0.4077709333
-0.8100009375
-0.1691273365
0.5383150063
-0.3040638758
-0.4737331548
0.4368445537
-0.4487063679
-0.4138616683
0.1365425907
-0.3131705916
0.6909707194
-0.7880995621
-0.6655887733
-0.6559684658
-0.3737506063
0.5987536276
0.9381084453
-0.7133843856
0.5989822098
-0.1561354605
0.4343418492
-0.7113947415
0.5250037367
-0.2404617681
-0.3598481441
0.5945116987
0.6137976152
-0.9715999056
-0.7762722471
-0.3305256376
0.3243180764
0.7949128926
-0.4904954486
-0.5831967142
1.0098935062
0.6502527286
-0.1411291290
0.3427817337
-0.9527665919
0.5146245674
0.7545799475
0.9735449358
-0.3511311644
0.5589951590
0.1040609640
0.9506646223
0.9253322336
0.2143226936
0.8616358146
0.4483927002
0.0899337251
0.2439686584
-0.9246864711
0.4814409855
0.7831052384
0.1116751404
-0.9560204725
-0.9129860888
0.8141850777
0.0599082352
-0.2736940346
-0.9550494978
-0.8196441234
0.8041853275
-0.3328550941
-0.5203514048
0.4648398466
0.4104627230
0.0778814132
-0.1480556077
0.1001068352
-0.7511645069
-0.2191604786
-0.8276402617
0.5717905882
0.4349693837
-0.9213283753
-0.3737653539
-0.7078750772
0.0441186396
-0.3107826649
0.3658392949
0.0560152067
-0.5993348094
-0.5984861277
-0.0378637725
0.2005431973
0.7836874376
0.3932740110
-0.6851599625
-0.8221892402
0.8312019078
0.8339919672
0.9343698067
-0.0663059898
-0.0812427427
-0.3146477528
-0.6392762316
0.3042994778
-0.1864662467
0.4638519905
0.2495251781
-0.5152221831
0.7628953151
-0.6503225958
0.5424588304
0.5711400245
0.5057551315
0.1463752788
-0.0951984440
0.4374671545
-0.9180474098
-0.1706592551
0.0074009449
-0.7921400726
-0.0794679078
-0.3619436686
-0.6265527922
0.0762093965
0.2770997643
-0.9287290869
-0.9207827784
-0.3332776362
-0.3306061401
-0.5799834635
-0.5365289251
0.5097002225
0.1267708491
-0.6137532817
0.7942590246
0.9238827624
-0.2933988359
0.5488073470
-0.4912019343
0.8696346299
-0.8888078328
0.6338067545
-0.2256789657
-0.9539387792
-0.2664270276
0.8311963505
-0.9369498823
0.1123082990
-0.3620094923
0.7320263800
-0.4534040835
0.5822665569
-0.7280786925
-0.2330917013
-0.6691638575
-0.2194349975
0.7516219461
0.7907011445
-0.0190759598
0.5768253541
-0.0879369628
0.0120313810
-0.1573347210
-0.3761259132
0.5346998374
0.1535414765
0.0519041488
0.9551599890
0.1538822614
-0.0163951003
0.6079396376
-0.1809966775
0.9717523305
0.8086106893
0.3254134502
0.0156976780
-0.5165294818
-0.7282391422
-0.6397284634
-0.9790829033
-0.0690347986
-0.9547439132
0.0521741528
0.6945341987
-0.1169916040
-0.8420942920
0.3921711618
0.1751054133
0.9021039467
-0.5344639711
0.3287415367
0.1482830674
0.9718909074
0.8491160268
0.8683778325
-0.3772006227
0.4827311819
-0.9325740851
-0.4724430365
0.6258788534
-0.8305683636
0.3236552613
0.7982824600
0.6098856779
-0.0479620744
-0.1767109875
-0.6491635625
0.5069271211
-0.5312610192
0.5907498544
-0.5845991712
0.0086641257
0.2400725104
0.9629295919
-1.0108968768
-0.4406405255
0.3419706363
0.5702683486
0.9897807218
-0.4065855875
-0.6472371470
0.2627911403
-0.3042691544
0.3077982380
0.6755830150
0.7650999184
0.8178940566
0.4182305136
0.0023002609
-0.9194055443
-0.5121534508
-0.0920383965
-0.0164110649
-0.2100807907
-0.1190607952
0.1411830485
0.7505819234
-0.5285424056
0.8988495259
-0.9933186099
-0.4690238803
-0.9963282403
0.9860822327
0.3021741074
-0.7640614608
-0.6036030399
0.9282491963
-0.2073563459
-0.6963268580
0.8546186865
-0.7183395926
0.1275308908
0.3764500125
0.2174857682
-0.0433752785
0.4626275514
0.8421163315
0.2469176865
-0.4081815473
-0.0415852111
0.7478142012
-0.3112594702
0.3678011339
-0.6841241559
-0.0183719577
-0.5547191404
-0.0148786760
0.1090547467
-0.8593221432
0.2411302263
-0.6120115818
-0.1470103160
0.4812397751
-0.6462517527
0.7217119887
-0.8746821932
-0.7306147621
-0.6524801943
-0.9748364316
-0.0824488909
-0.2964221387
0.8394645871
-0.2461517037
-0.2756252258
0.0049787670
-0.7187348788
0.6784928839
-0.9993269308
-0.4971730897
-0.0511789706
0.7622240481
0.6385462033
-0.1727053756
-0.9616808433
-0.8784308877
0.6797444342
0.9077616302
-0.3488493853
0.5666260439
0.3011300174
-0.2856210828
-0.4436472807
-0.3413390370
0.0211336922
-0.2693726224
0.8541149938
0.3514581545
0.1055210125
-0.8598508997
-0.8542038756
0.8524403811
-0.9909553437
0.4506009283
0.2151488318
0.5242726386
-0.3080446357
0.6724396391
0.5186980763
0.5780248379
-0.6027812653
0.4656556146
-0.4308116429
-0.4740300232
-0.8516402106
-0.1629564762
0.6989299171
0.5086110861
-0.3715591312
-0.4950524731
0.8290809275
0.3247071676
-0.2909538862
-0.4973426389
0.1273719724
0.2777430941
-0.0382234080
0.9845030626
-0.1089825628
-0.4101146924
0.3441147844
0.9487233789
-0.3379062366
-0.0183925180
-0.0198164690
-0.0034560740
0.0271716379
0.0270476104
-0.0537778091
0.0469631988
0.0128833688
-0.0124271578
-0.0070447949
0.0373929517
-0.0478234713
0.0170762514
-0.0150332233
0.0154058026
-0.1254997846
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment