Commit 5061e307 authored by Jan Janssen's avatar Jan Janssen
Browse files

Executed all the notebooks again on workshop.pyiron.org

parent 4307dfbe
%% Cell type:markdown id:varying-litigation tags:
%% Cell type:markdown id:sound-strength tags:
# [**Workflows for atomistic simulations**](http://potentials.rub.de/)
%% Cell type:markdown id:numerous-egypt tags:
%% Cell type:markdown id:immediate-edinburgh tags:
## **Day 1 - Atomistic simulations with [pyiron](https://pyiron.org)**
### **Exercise 1: Introduction to atomistic simulations with pyiron**
......@@ -17,83 +17,83 @@
The aim of this exercise is to make you familiar with:
* A general overview of what pyiron can do
* How to set up atomic structures and run atomistic simulation codes through pyiron
%% Cell type:markdown id:beneficial-element tags:
%% Cell type:markdown id:remarkable-senegal tags:
### **Importing necessary libraries**
As a first step we import the libraries [numpy](http://www.numpy.org/) for data analysis and [matplotlib](https://matplotlib.org/) for visualization.
%% Cell type:code id:beneficial-republic tags:
%% Cell type:code id:concerned-rates tags:
``` python
import numpy as np
%matplotlib inline
import matplotlib.pylab as plt
```
%% Cell type:markdown id:color-membership tags:
%% Cell type:markdown id:severe-aruba tags:
Fundamentally, we only need to import one module from `pyiron`: the `Project` class
%% Cell type:code id:religious-adapter tags:
%% Cell type:code id:immune-federation tags:
``` python
from pyiron import Project
```
%% Cell type:markdown id:spectacular-shark tags:
%% Cell type:markdown id:nuclear-violence tags:
The Project object introduced below is central in pyiron. It allows to name the project as well as to derive all other objects such as structures, jobs etc. without having to import them. Thus, by code completion *Tab* the respective commands can be found easily.
We now create a pyiron Project named 'first_steps'.
%% Cell type:markdown id:studied-recruitment tags:
%% Cell type:markdown id:czech-target tags:
### **Creation of a project instance**
%% Cell type:code id:knowing-rating tags:
%% Cell type:code id:short-biodiversity tags:
``` python
pr = Project("first_steps")
```
%% Cell type:markdown id:solid-protein tags:
%% Cell type:markdown id:civilian-wireless tags:
The project name also applies for the directory that is created for the project. All data generated by this `Project` object resides in this directory.
%% Cell type:code id:relative-belle tags:
%% Cell type:code id:other-parade tags:
``` python
pr.path
```
%%%% Output: execute_result
'/home/surendralal/notebooks/pyiron_potentialfit/day_1/first_steps/'
'/home/pyiron/day_1/first_steps/'
%% Cell type:code id:matched-hunger tags:
%% Cell type:code id:upset-registrar tags:
``` python
pr
```
%%%% Output: execute_result
{'groups': ['E_V_curve', 'E_V_curve_DFT'], 'nodes': ['lammps_job', 'sphinx_job']}
{'groups': ['E_V_curve', 'E_V_curve_DFT'], 'nodes': []}
%% Cell type:markdown id:social-deadline tags:
%% Cell type:markdown id:floral-rhythm tags:
### **Creating atomic structures**
%% Cell type:markdown id:cathedral-death tags:
%% Cell type:markdown id:several-julian tags:
Every atomistic simulation needs an atomic structure. For more details on generating and manipulating structures, please have a look at our [structures example](https://pyiron.readthedocs.io/en/latest/source/notebooks/structures.html). In this section however, we show how to generate and manipulate bulk crystals, surfaces, etc. pyiron's structure class is derived from the popular [`ase` package](https://wiki.fysik.dtu.dk/ase/ase/build/build.html) and any `ase` function to manipulate structures can also be applied here.
%% Cell type:code id:endangered-editing tags:
%% Cell type:code id:permanent-intelligence tags:
``` python
# Creating a bulk fcc cubic unitcell
Cu_unitcell_cubic = pr.create_ase_bulk('Cu', cubic=True, a=3.61)
Cu_unitcell_cubic
......@@ -107,11 +107,11 @@
Cu: [1.805 1.805 0. ]
pbc: [ True True True]
cell:
Cell([3.61, 3.61, 3.61])
%% Cell type:code id:verified-support tags:
%% Cell type:code id:suspended-board tags:
``` python
Cu_supercell_3_3_3 = Cu_unitcell_cubic.repeat([3, 3, 3])
Cu_supercell_3_3_3.plot3d(particle_size=2)
```
......@@ -120,22 +120,22 @@
%%%% Output: display_data
%% Cell type:code id:chinese-output tags:
%% Cell type:code id:aging-broadcast tags:
``` python
# Creating a bulk fcc primitive unitcell and cupercell
Cu_unitcell_primitive = pr.create_ase_bulk('Cu', a=4.01)
Cu_unitcell_primitive.repeat([3, 3, 3]).plot3d(particle_size=2)
```
%%%% Output: display_data
%% Cell type:code id:mobile-tumor tags:
%% Cell type:code id:broke-bibliography tags:
``` python
# Creating a vacancy in a supercell
Cu_vacancy = Cu_supercell_3_3_3.copy()
del Cu_vacancy[0] # Deleting the first atom
......@@ -144,11 +144,11 @@
```
%%%% Output: display_data
%% Cell type:code id:immediate-share tags:
%% Cell type:code id:private-spending tags:
``` python
# Creating a fcc111 surface supercell
num_layers = 4
Cu_fcc_111 = pr.create_surface("Cu", surface_type="fcc111", size=(4, 4, num_layers), vacuum=12, orthogonal=True)
......@@ -156,11 +156,11 @@
```
%%%% Output: display_data
%% Cell type:code id:dense-million tags:
%% Cell type:code id:metallic-fifty tags:
``` python
# Atom in a box
cell = np.eye(3) * 10
Cu_atom_box = pr.create_atoms("Cu", cell=cell, scaled_positions=[[0.5, 0.5, 0.5]])
......@@ -168,11 +168,11 @@
```
%%%% Output: display_data
%% Cell type:code id:mexican-difference tags:
%% Cell type:code id:tribal-cylinder tags:
``` python
# Cu-Cu dimer
cell = np.eye(3) * 10
Cu_atom_1 = pr.create_atoms("Cu", cell=cell, scaled_positions=[[0.5, 0.5, 0.5]])
......@@ -186,81 +186,81 @@
```
%%%% Output: display_data
%% Cell type:markdown id:twenty-spouse tags:
%% Cell type:markdown id:cutting-pakistan tags:
### **Running an atomistic calculation using interatomic potentials (with LAMMPS)**
Once we have an atomic structure, we can set up a simulation "job" of any atomistic simulation that is intergrated within pyiron. In this section, we are going to use the popular [LAMMPS code](https://lammps.sandia.gov/).
%% Cell type:code id:educated-retro tags:
%% Cell type:code id:color-patrol tags:
``` python
# Create a job
job_lammps = pr.create.job.Lammps(job_name="lammps_job")
```
%% Cell type:markdown id:imperial-prompt tags:
%% Cell type:markdown id:forced-thumbnail tags:
Every atomistic simulation code needs an input atomic structure. We use the Cu supercell structure we created earlier
%% Cell type:code id:aerial-lemon tags:
%% Cell type:code id:critical-joyce tags:
``` python
# Assign an atomic structure to the job
job_lammps.structure = Cu_supercell_3_3_3
```
%% Cell type:markdown id:creative-railway tags:
%% Cell type:markdown id:clinical-closer tags:
Once the structure is assigned, an appropriate potential should also be chosen. This list of available for the structure containing Cu can be found below
%% Cell type:code id:restricted-yesterday tags:
%% Cell type:code id:pharmaceutical-sierra tags:
``` python
# See available potentials
job_lammps.list_potentials()[50:60]
```
%%%% Output: execute_result
['EAM_Dynamo_LiuLiuBorucki_1999_AlCu__MO_020851069572_000',
'EAM_Dynamo_MendelevKing_2008_Cu__MO_748636486270_005',
'EAM_Dynamo_MendelevKramerBecker_2008_Cu__MO_945691923444_005',
'EAM_Dynamo_MendelevKramerOtt_2009_CuZr__MO_600021860456_005',
'EAM_Dynamo_MendelevSordeletKramer_2007_CuZr__MO_120596890176_005',
'EAM_Dynamo_MishinMehlPapaconstantopoulos_2001_Cu__MO_346334655118_005',
'EAM_Dynamo_OnatDurukanoglu_2014_CuNi__MO_592013496703_005',
'EAM_Dynamo_WilliamsMishinHamilton_2006_CuAg__MO_128703483589_005',
'EAM_Dynamo_WuTrinkle_2009_CuAg__MO_270337113239_005',
'EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_CuAgAu__MO_318213562153_000']
['2016--Borovikov-V--fictional-Cu-31--LAMMPS--ipr1',
'2016--Borovikov-V--fictional-Cu-32--LAMMPS--ipr1',
'2016--Borovikov-V--fictional-Cu-33--LAMMPS--ipr1',
'2016--Borovikov-V--fictional-Cu-34--LAMMPS--ipr1',
'2016--Zhou-X-W--Al-Cu--LAMMPS--ipr2',
'2017--Kim-J-S--Cu-Pt--LAMMPS--ipr1',
'2018--Etesami-S-A--Cu--LAMMPS--ipr1',
'2018--Farkas-D--Fe-Ni-Cr-Co-Cu--LAMMPS--ipr2',
'2018--Jeong-G-U--Pd-Cu--LAMMPS--ipr1',
'2018--Zhou-X-W--Al-Cu-H--LAMMPS--ipr1']
%% Cell type:code id:unauthorized-psychology tags:
%% Cell type:code id:saving-incident tags:
``` python
# Choose one of these potentials
job_lammps.potential = '2012--Mendelev-M-I--Cu--LAMMPS--ipr1'
```
%% Cell type:markdown id:important-crowd tags:
%% Cell type:markdown id:undefined-tolerance tags:
At this stage, the computational parameters for the simulation needs to be specified. pyiron parses generic computational parameters into code specific parameters allowing for an easy transition between simulation codes
%% Cell type:code id:overall-writing tags:
%% Cell type:code id:wrong-oxygen tags:
``` python
# specify calculation details: in this case: MD at 800 K in the NPT ensemble (pressure=0) for 10000 steps
job_lammps.calc_md(temperature=800, pressure=0, n_ionic_steps=10000)
```
%% Cell type:markdown id:pediatric-guidance tags:
%% Cell type:markdown id:exterior-quest tags:
We can now see how pyiron sets-up the corresponding LAMMPS input
%% Cell type:code id:operational-galaxy tags:
%% Cell type:code id:discrete-myrtle tags:
``` python
job_lammps.input.control
```
......@@ -321,181 +321,103 @@
13
14
15
16
%% Cell type:markdown id:equal-nylon tags:
%% Cell type:markdown id:respiratory-virus tags:
Once the `run()` commmand is called, pyiron creates necessary input files, calls the simulation code, and finally parses and stores the output.
%% Cell type:code id:about-genre tags:
%% Cell type:code id:theoretical-combining tags:
``` python
job_lammps.run()
```
%% Cell type:code id:headed-thinking tags:
%% Cell type:code id:based-backing tags:
``` python
pr
```
%%%% Output: execute_result
{'groups': ['E_V_curve', 'E_V_curve_DFT'], 'nodes': ['lammps_job', 'sphinx_job']}
{'groups': ['E_V_curve', 'E_V_curve_DFT'], 'nodes': ['lammps_job']}
%% Cell type:code id:republican-steps tags:
%% Cell type:code id:monetary-scout tags:
``` python
pr.job_table()
```
%%%% Output: execute_result
id status chemicalformula job subjob \
0 4354 finished Cu108 lammps_job /lammps_job
1 4355 finished Cu sphinx_job /sphinx_job
2 4356 finished Cu job_a_3_4 /job_a_3_4
3 4357 finished Cu job_a_3_5 /job_a_3_5
4 4358 finished Cu job_a_3_6 /job_a_3_6
5 4359 finished Cu job_a_3_7 /job_a_3_7
6 4360 finished Cu job_a_3_8 /job_a_3_8
7 4361 finished Cu job_a_3_9 /job_a_3_9
8 4362 finished Cu job_a_4_0 /job_a_4_0
9 4363 finished Cu job_a_3_4 /job_a_3_4
10 4364 finished Cu job_a_3_5 /job_a_3_5
11 4365 finished Cu job_a_3_6 /job_a_3_6
12 4366 finished Cu job_a_3_7 /job_a_3_7
13 4367 finished Cu job_a_3_8 /job_a_3_8
14 4368 finished Cu job_a_3_9 /job_a_3_9
15 4369 finished Cu job_a_4_0 /job_a_4_0
projectpath \
0 /home/surendralal/
1 /home/surendralal/
2 /home/surendralal/
3 /home/surendralal/
4 /home/surendralal/
5 /home/surendralal/
6 /home/surendralal/
7 /home/surendralal/
8 /home/surendralal/
9 /home/surendralal/
10 /home/surendralal/
11 /home/surendralal/
12 /home/surendralal/
13 /home/surendralal/
14 /home/surendralal/
15 /home/surendralal/
project \
0 notebooks/pyiron_potentialfit/day_1/first_steps/
1 notebooks/pyiron_potentialfit/day_1/first_steps/
2 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
3 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
4 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
5 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
6 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
7 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
8 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve/
9 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
10 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
11 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
12 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
13 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
14 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
15 notebooks/pyiron_potentialfit/day_1/first_steps/E_V_curve_DFT/
timestart timestop totalcputime \
0 2021-03-06 16:03:40.745470 2021-03-06 16:03:45.494803 4.0
1 2021-03-06 16:04:50.074383 2021-03-06 16:04:56.638128 6.0
2 2021-03-06 16:11:07.639631 2021-03-06 16:11:08.342303 0.0
3 2021-03-06 16:11:08.822636 2021-03-06 16:11:09.471384 0.0
4 2021-03-06 16:11:09.943131 2021-03-06 16:11:10.600866 0.0
5 2021-03-06 16:11:11.080672 2021-03-06 16:11:11.753735 0.0
6 2021-03-06 16:11:12.228943 2021-03-06 16:11:12.867039 0.0
7 2021-03-06 16:11:13.342478 2021-03-06 16:11:13.979644 0.0
8 2021-03-06 16:11:14.465906 2021-03-06 16:11:15.082557 0.0
9 2021-03-06 16:13:46.540931 2021-03-06 16:13:49.880940 3.0
10 2021-03-06 16:13:50.243705 2021-03-06 16:13:53.604881 3.0
11 2021-03-06 16:13:53.999279 2021-03-06 16:13:57.460432 3.0
12 2021-03-06 16:13:57.889876 2021-03-06 16:14:01.894945 4.0
13 2021-03-06 16:14:02.285518 2021-03-06 16:14:06.226798 3.0
14 2021-03-06 16:14:06.586832 2021-03-06 16:14:11.549242 4.0
15 2021-03-06 16:14:12.119382 2021-03-06 16:14:17.251638 5.0
computer hamilton hamversion parentid masterid
0 pyiron@cmdell17#1 Lammps 0.1 None None
1 pyiron@cmdell17#1 Sphinx 2.6.1 None None
2 pyiron@cmdell17#1 Lammps 0.1 None None
3 pyiron@cmdell17#1 Lammps 0.1 None None
4 pyiron@cmdell17#1 Lammps 0.1 None None
5 pyiron@cmdell17#1 Lammps 0.1 None None
6 pyiron@cmdell17#1 Lammps 0.1 None None
7 pyiron@cmdell17#1 Lammps 0.1 None None
8 pyiron@cmdell17#1 Lammps 0.1 None None
9 pyiron@cmdell17#1 Sphinx 2.6.1 None None
10 pyiron@cmdell17#1 Sphinx 2.6.1 None None
11 pyiron@cmdell17#1 Sphinx 2.6.1 None None
12 pyiron@cmdell17#1 Sphinx 2.6.1 None None
13 pyiron@cmdell17#1 Sphinx 2.6.1 None None
14 pyiron@cmdell17#1 Sphinx 2.6.1 None None
15 pyiron@cmdell17#1 Sphinx 2.6.1 None None
id status chemicalformula job subjob projectpath \
0 5 finished Cu108 lammps_job /lammps_job /home/pyiron/
project timestart timestop \
0 day_1/first_steps/ 2021-03-09 08:58:10.515085 2021-03-09 08:58:14.811278
totalcputime computer hamilton hamversion parentid \
0 4.0 pyiron@jupyter-janssen#1 Lammps 0.1 None
masterid
0 None
%% Cell type:markdown id:french-vertical tags:
%% Cell type:markdown id:involved-studio tags:
## Analysing a calculation
%% Cell type:code id:after-experience tags:
%% Cell type:code id:diverse-balloon tags:
``` python
%%time
# Load the job
job_loaded = pr['lammps_job']
```
%% Cell type:code id:featured-locking tags:
%% Cell type:code id:confidential-composition tags:
``` python
job_loaded
```
%%%% Output: execute_result
{'groups': ['input', 'output'], 'nodes': ['HDF_VERSION', 'NAME', 'TYPE', 'VERSION', 'server', 'status']}
%% Cell type:code id:interior-induction tags:
%% Cell type:code id:alternate-angel tags:
``` python
job_loaded["output/generic"]
```
%%%% Output: execute_result
{'groups': [], 'nodes': ['cells', 'energy_pot', 'energy_tot', 'forces', 'indices', 'positions', 'pressures', 'steps', 'temperature', 'unwrapped_positions', 'velocities', 'volume']}
%% Cell type:code id:manual-practice tags:
%% Cell type:code id:following-antique tags:
``` python
final_struct = job_loaded.get_structure(iteration_step=-1)
final_struct.plot3d()
```
%%%% Output: display_data
%% Cell type:code id:printable-soldier tags:
%% Cell type:code id:vertical-shade tags:
``` python
job_loaded.animate_structure()
```
%%%% Output: display_data
%% Cell type:code id:adjusted-movie tags:
%% Cell type:code id:massive-hybrid tags:
``` python
temperatures = job_loaded['output/generic/temperature']
steps = job_loaded['output/generic/steps']
plt.plot(steps, temperatures)
......@@ -505,11 +427,11 @@
%%%% Output: display_data
![]()
%% Cell type:code id:bearing-receipt tags:
%% Cell type:code id:happy-shopper tags:
``` python
pos = job_loaded['output/generic/positions']
x, y, z = [pos[:, :, i] for i in range(3)]
sel = np.abs(z) < 0.1
......@@ -522,56 +444,56 @@
%%%% Output: display_data
![]()
%% Cell type:markdown id:parallel-bunch tags:
%% Cell type:markdown id:leading-museum tags:
### **Running an atomistic calculation using DFT (with SPHInX)**
%% Cell type:code id:stone-feedback tags:
%% Cell type:code id:rough-shield tags:
``` python
job_sphinx = pr.create.job.Sphinx("sphinx_job")
job_sphinx.structure = Cu_unitcell_primitive
job_sphinx.set_exchange_correlation_functional("PBE")
job_sphinx.plane_wave_cutoff = 350
job_sphinx.calc_static()
job_sphinx.run()
```
%% Cell type:code id:tropical-complement tags:
%% Cell type:code id:eligible-pottery tags:
``` python
job_sphinx['output/generic/']
```
%%%% Output: execute_result
{'groups': ['dft'], 'nodes': ['cells', 'computation_time', 'energy_pot', 'energy_tot', 'forces', 'positions', 'volume']}
%% Cell type:code id:superior-cisco tags:
%% Cell type:code id:identical-delicious tags:
``` python
job_sphinx["output/generic/energy_tot"] # Energy for every ionic step
```
%%%% Output: execute_result
array([-5386.42735597])
array([-5386.42735492])
%% Cell type:code id:joined-prairie tags:
%% Cell type:code id:aggressive-chest tags:
``` python
job_sphinx['output/electronic_structure']
```
%%%% Output: execute_result
{'groups': ['dos'], 'nodes': ['TYPE', 'efermi', 'eig_matrix', 'k_points', 'k_weights', 'occ_matrix']}
%% Cell type:code id:flexible-horizontal tags:
%% Cell type:code id:forbidden-christmas tags:
``` python
eigenvalues = job_sphinx['output/electronic_structure/eig_matrix'].flatten()
occupancies = job_sphinx['output/electronic_structure/occ_matrix'].flatten()
......@@ -582,41 +504,41 @@
plt.ylabel('Occupancy');
```
%%%% Output: display_data
![]()
![]()
%% Cell type:markdown id:french-spare tags:
%% Cell type:markdown id:cloudy-korean tags:
## **Task 1: Energy volume curve for Al**
%% Cell type:code id:resistant-vegetation tags:
%% Cell type:code id:nearby-queen tags:
``` python
def get_volume(job):
return job["output/generic/volume"][-1]
```
%% Cell type:code id:bibliographic-chancellor tags:
%% Cell type:code id:boolean-spectrum tags:
``` python
def get_energy(job):
return job["output/generic/energy_tot"][-1]
```