Skip to content
Snippets Groups Projects
Commit b639b34c authored by Mikkel Strange's avatar Mikkel Strange
Browse files

parser for new type (aff) GPAW output files

parent 9f96d449
No related branches found
No related tags found
No related merge requests found
import numpy as np
parameters = {
'mode': 'fd',
'xc': 'LDA',
'occupations': None,
'poissonsolver': None,
'h': None, # Angstrom
'gpts': None,
'kpts': [(0.0, 0.0, 0.0)],
'nbands': None,
'charge': 0,
'setups': {},
'basis': {},
'spinpol': None,
'fixdensity': False,
'filter': None,
'mixer': None,
'eigensolver': None,
'background_charge': None,
'external': None,
'random': False,
'hund': False,
'maxiter': 333,
'idiotproof': True,
'symmetry': {'point_group': True,
'time_reversal': True,
'symmorphic': True,
'tolerance': 1e-7},
'convergence': {'energy': 0.0005, # eV / electron
'density': 1.0e-4,
'eigenstates': 4.0e-8, # eV^2
'bands': 'occupied',
'forces': np.inf}, # eV / Ang
'dtype': None, # Deprecated
'width': None, # Deprecated
'verbose': 0}
from __future__ import division
import os
from contextlib import contextmanager
import numpy as np
from ase import units
from ase.data import chemical_symbols
from ase.io.aff import affopen
#from ase.io.trajectory import read_atoms
from ase.data import atomic_masses
from ase.units import Rydberg
import setup_paths
from nomadcore.unit_conversion.unit_conversion import convert_unit as cu
from nomadcore.local_meta_info import loadJsonFile, InfoKindEl
from nomadcore.parser_backend import JsonParseEventsWriterBackend
from libxc_names import get_libxc_name
from default_parameters import parameters as parms
@contextmanager
def open_section(p, name):
gid = p.openSection(name)
yield gid
p.closeSection(name, gid)
def c(value, unit=None):
""" Dummy function for unit conversion"""
return value
return cu(value, unit)
parser_info = {"name": "parser2_gpaw", "version": "1.0"}
path = '../../../../nomad-meta-info/meta_info/nomad_meta_info/' +\
'gpaw.nomadmetainfo.json'
metaInfoPath = os.path.normpath(
os.path.join(os.path.dirname(os.path.abspath(__file__)), path))
metaInfoEnv, warns = loadJsonFile(filePath=metaInfoPath,
dependencyLoader=None,
extraArgsHandling=InfoKindEl.ADD_EXTRA_ARGS,
uri=None)
def parse(filename):
p = JsonParseEventsWriterBackend(metaInfoEnv)
o = open_section
r = affopen(filename) # Reader(filename)
p.startedParsingSession(filename, parser_info)
parms.update(r.parameters.asdict())
with o(p, 'section_run'):
p.addValue('program_name', 'GPAW')
p.addValue('program_version', r.gpaw_version)
mode = parms['mode']
if isinstance(mode, basestring):
mode = {'name': mode}
if mode['name'] == 'pw':
p.addValue('program_basis_set_type', 'plane waves')
with o(p, 'section_basis_set_cell_dependent'):
p.addValue('basis_set_cell_dependent_name',
'PW_%.1f_Ry' % (mode['ecut'] / r.ha * 2)) # in Ry
p.addRealValue('basis_set_planewave_cutoff',
c(mode['ecut'], 'eV'))
elif mode['name'] == 'fd':
p.addValue('program_basis_set_type', 'real space grid')
with o(p, 'section_basis_set_cell_dependent'):
cell = r.atoms.cell
ngpts = r.density.density.shape
h1 = np.linalg.norm(cell[0]) / ngpts[0]
h2 = np.linalg.norm(cell[1]) / ngpts[1]
h3 = np.linalg.norm(cell[2]) / ngpts[2]
h = (h1 + h2 + h3) / 3.0
p.addValue('basis_set_cell_dependent_name',
'GR_%.1f' % (c(h, 'angstrom') * 1.0E15)) # in fm
elif mode['name'] == 'lcao':
p.addValue('program_basis_set_type', 'numeric AOs')
with o(p, 'section_basis_set_atom_centered'):
p.addValue('basis_set_atom_centered_short_name',
parms['basis'])
with o(p, 'section_system') as system_gid:
p.addArrayValues('simulation_cell',
c(r.atoms.cell, 'angstrom'))
symbols = np.array([chemical_symbols[z] for z in r.atoms.numbers])
p.addArrayValues('atom_labels', symbols)
p.addArrayValues('atom_positions', c(r.atoms.positions, 'angstrom'))
p.addArrayValues('configuration_periodic_dimensions',
np.array(r.atoms.pbc, bool))
if hasattr(r.atoms, 'momenta'):
masses = atomic_masses[r.atoms.numbers]
velocities = r.atoms.momenta / masses.reshape(-1, 1)
p.addArrayValues('atom_velocities',
c(velocities * units.fs / units.Angstrom,
'angstrom/femtosecond'))
with o(p, 'section_sampling_method'):
p.addValue('ensemble_type', 'NVE')
with o(p, 'section_frame_sequence'):
pass
with o(p, 'section_method') as method_gid:
p.addValue('relativity_method', 'pseudo_scalar_relativistic')
p.addValue('electronic_structure_method', 'DFT')
p.addValue('scf_threshold_energy_change',
c(parms['convergence']['energy'], 'eV')) # eV / electron
#if r.FixMagneticMoment:
# p.addValue('x_gpaw_fixed_spin_Sz',
# r.MagneticMoments.sum() / 2.)
if parms['occupations'] is None: # use default values
if tuple(parms['kpts']) == (1, 1, 1):
width = 0.0
else:
width = 0.1
parms['occupations'] = {'width': width, 'name': 'fermi-dirac'}
p.addValue('smearing_kind', parms['occupations']['name'])
p.addRealValue('smearing_width',
c(parms['occupations']['width'], 'eV'))
p.addRealValue('total_charge', parms['charge'])
with o(p, 'section_XC_functionals'):
p.addValue('XC_functional_name',
get_libxc_name(parms['xc']))
with o(p, 'section_single_configuration_calculation'):
p.addValue('single_configuration_calculation_to_system_ref',
system_gid)
p.addValue('single_configuration_to_calculation_method_ref',
method_gid)
p.addValue('single_configuration_calculation_converged',
r.scf.converged)
p.addRealValue('energy_total',
c(r.hamiltonian.e_total_extrapolated, 'eV'))
p.addRealValue('energy_free',
c(r.hamiltonian.e_total_free, 'eV'))
p.addRealValue('energy_XC', c(r.hamiltonian.e_xc, 'eV'))
p.addRealValue('electronic_kinetic_energy',
c(r.hamiltonian.e_kinetic, 'eV'))
p.addRealValue('energy_correction_entropy',
c(r.hamiltonian.e_entropy, 'eV'))
p.addRealValue('energy_reference_fermi',
c(r.occupations.fermilevel, 'eV'))
p.addRealValue('energy_reference_fermi',
c(r.occupations.fermilevel, 'eV'))
if hasattr(r.results, 'forces'):
p.addArrayValues('atom_forces_free',
c(r.results.forces, 'eV/angstrom'))
if hasattr(r.results, 'magmoms'):
p.addArrayValues('x_gpaw_magnetic_moments',
r.results.magmoms)
p.addRealValue('x_gpaw_spin_Sz', r.results.magmoms.sum() / 2.0)
#p.addArrayValues('x_gpaw_atomic_density_matrices',
# r.AtomicDensityMatrices)
#p.addArrayValues('x_gpaw_projections_real', r.Projections.real)
#p.addArrayValues('x_gpaw_projections_imag', r.Projections.imag)
with o(p, 'section_eigenvalues'):
p.addValue('eigenvalues_kind', 'normal')
p.addArrayValues('eigenvalues_values',
c(r.wave_functions.eigenvalues, 'eV'))
p.addArrayValues('eigenvalues_occupation',
r.wave_functions.occupations)
#p.addArrayValues('eigenvalues_kpoints', r.IBZKPoints)
p.finishedParsingSession("ParseSuccess", None)
if __name__ == '__main__':
import sys
filename = sys.argv[1]
parse(filename)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment