Something went wrong on our end
-
Rosendo Valero Montero authoredRosendo Valero Montero authored
bec.out 30.78 KiB
Entering Gaussian System, Link 0=g09
Initial command:
/usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe "/tmp/rdj3/g09-21434/Gau-26733.inp" -scrdir="/tmp/rdj3/g09-21434/"
Entering Link 1 = /usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe PID= 26734.
Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
Gaussian, Inc. All Rights Reserved.
This is part of the Gaussian(R) 09 program. It is based on
the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
University), and the Gaussian 82(TM) system (copyright 1983,
Carnegie Mellon University). Gaussian is a federally registered
trademark of Gaussian, Inc.
This software contains proprietary and confidential information,
including trade secrets, belonging to Gaussian, Inc.
This software is provided under written license and may be
used, copied, transmitted, or stored only in accord with that
written license.
The following legend is applicable only to US Government
contracts under FAR:
RESTRICTED RIGHTS LEGEND
Use, reproduction and disclosure by the US Government is
subject to restrictions as set forth in subparagraphs (a)
and (c) of the Commercial Computer Software - Restricted
Rights clause in FAR 52.227-19.
Gaussian, Inc.
340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
---------------------------------------------------------------
Warning -- This program may not be used in any manner that
competes with the business of Gaussian, Inc. or will provide
assistance to any competitor of Gaussian, Inc. The licensee
of this program is prohibited from giving any competitor of
Gaussian, Inc. access to this program. By using this program,
the user acknowledges that Gaussian, Inc. is engaged in the
business of creating and licensing software in the field of
computational chemistry and represents and warrants to the
licensee that it is not a competitor of Gaussian, Inc. and that
it will not use this program in any manner prohibited above.
---------------------------------------------------------------
Cite this work as:
Gaussian 09, Revision D.01,
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,
J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,
K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand,
K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,
V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,
R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,
P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,
O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,
and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
******************************************
Gaussian 09: EM64L-G09RevD.01 24-Apr-2013
13-May-2014
******************************************
%NProc=8
Will use up to 8 processors via shared memory.
%mem=424000000
-----------------------
#CCSD(T)/6-31G* scf=xqc
-----------------------
1/38=1/1;
2/12=2,17=6,18=5,40=1/2;
3/5=1,6=6,7=1,11=9,16=1,25=1,30=1/1,2,3;
4//1;
5/5=2,8=3,13=1,38=5/2,8;
8/6=4,9=120000,10=2/1,4;
9/5=7,14=2/13;
6/7=2,8=2,9=2,10=2/1;
99/5=1,9=1/99;
----------------------------------------------------------------------
bec beryllium carbide triplet casno=57788940 state=1 config=1 method=1
12 basis=1
----------------------------------------------------------------------
Symbolic Z-matrix:
Charge = 1 Multiplicity = 2
BE 0. 0. -1.00329
C 0. 0. 0.66886
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 4 0 0.000000 0.000000 -1.003286
2 6 0 0.000000 0.000000 0.668857
---------------------------------------------------------------------
Stoichiometry CBe(1+,2)
Framework group C*V[C*(BeC)]
Deg. of freedom 1
Full point group C*V NOp 4
Largest Abelian subgroup C2V NOp 4
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 4 0 0.000000 0.000000 -1.003286
2 6 0 0.000000 0.000000 0.668857
---------------------------------------------------------------------
Rotational constants (GHZ): 0.0000000 35.1180430 35.1180430
Standard basis: 6-31G(d) (6D, 7F)
There are 16 symmetry adapted cartesian basis functions of A1 symmetry.
There are 2 symmetry adapted cartesian basis functions of A2 symmetry.
There are 6 symmetry adapted cartesian basis functions of B1 symmetry.
There are 6 symmetry adapted cartesian basis functions of B2 symmetry.
There are 16 symmetry adapted basis functions of A1 symmetry.
There are 2 symmetry adapted basis functions of A2 symmetry.
There are 6 symmetry adapted basis functions of B1 symmetry.
There are 6 symmetry adapted basis functions of B2 symmetry.
30 basis functions, 56 primitive gaussians, 30 cartesian basis functions
5 alpha electrons 4 beta electrons
nuclear repulsion energy 7.5951955103 Hartrees.
NAtoms= 2 NActive= 2 NUniq= 2 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 30 RedAO= T EigKep= 2.65D-02 NBF= 16 2 6 6
NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 16 2 6 6
ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00
Harris functional with IExCor= 205 and IRadAn= 4 diagonalized for initial guess.
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Initial guess orbital symmetries:
Alpha Orbitals:
Occupied (SG) (SG) (SG) (SG) (PI)
Virtual (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG)
(PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA)
(DLTA) (PI) (PI) (SG) (SG) (SG)
Beta Orbitals:
Occupied (SG) (SG) (SG) (SG)
Virtual (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG)
(SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
(DLTA) (DLTA) (PI) (PI) (SG) (SG) (SG)
Initial guess <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946572.
Requested convergence on RMS density matrix=1.00D-08 within 64 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
Rare condition: small coef for last iteration: 0.000D+00
>>>>>>>>>> Convergence criterion not met.
SCF Done: E(UHF) = -51.9696612669 A.U. after 65 cycles
NFock= 64 Conv=0.94D-03 -V/T= 1.9976
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.8575 S= 0.5524
<L.S>= 0.000000000000E+00
Annihilation of the first spin contaminant:
S**2 before annihilation 0.8575, after 0.7510
Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946330.
LinEq1: Iter= 0 NonCon= 1 RMS=1.42D-04 Max=1.48D-03 NDo= 1
AX will form 1 AO Fock derivatives at one time.
LinEq1: Iter= 1 NonCon= 1 RMS=5.43D-05 Max=4.09D-04 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=1.85D-05 Max=1.88D-04 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=2.80D-06 Max=1.69D-05 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=5.39D-07 Max=2.83D-06 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=6.35D-08 Max=4.16D-07 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=8.12D-09 Max=4.66D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 0 RMS=9.71D-10 Max=6.01D-09 NDo= 1
Linear equations converged to 1.513D-09 1.513D-08 after 7 iterations.
LinEq1: Iter= 0 NonCon= 1 RMS=2.59D-04 Max=3.25D-03 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=6.80D-05 Max=4.10D-04 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=4.38D-05 Max=6.03D-04 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=8.87D-06 Max=9.41D-05 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.23D-06 Max=7.61D-06 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.28D-07 Max=6.18D-07 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=2.01D-08 Max=1.20D-07 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=3.05D-09 Max=2.43D-08 NDo= 1
LinEq1: Iter= 8 NonCon= 0 RMS=4.20D-10 Max=2.92D-09 NDo= 1
Linear equations converged to 1.513D-09 1.513D-08 after 8 iterations.
LinEq1: Iter= 0 NonCon= 1 RMS=4.55D-04 Max=5.62D-03 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=1.07D-04 Max=6.43D-04 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=6.83D-05 Max=8.59D-04 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=1.61D-05 Max=1.66D-04 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=2.33D-06 Max=1.35D-05 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=2.39D-07 Max=1.01D-06 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=3.25D-08 Max=1.61D-07 NDo= 1
LinEq1: Iter= 7 NonCon= 1 RMS=4.93D-09 Max=2.96D-08 NDo= 1
LinEq1: Iter= 8 NonCon= 0 RMS=7.59D-10 Max=5.23D-09 NDo= 1
Linear equations converged to 1.513D-09 1.513D-08 after 8 iterations.
Incorrect curvature in search direction -- initial direction reversed.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Minimum is close to point 5 DX= 8.43D-02 DF= -5.24D-07 DXR= 3.39D-02 DFR= 1.15D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 2 and 3.
Minimum is close to point 3 DX= -1.54D-01 DF= -1.48D-06 DXR= 9.97D-02 DFR= 7.94D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -5.46D-02 DF= -6.79D-07 DXR= 3.32D-02 DFR= 2.45D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -5.01D-02 DF= -7.44D-07 DXR= 3.23D-02 DFR= 2.13D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -8.08D-03 DF= -2.56D-08 DXR= 5.07D-03 DFR= 5.97D-05 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Minimum is close to point 2 DX= 9.61D-02 DF= -1.71D-06 DXR= 5.67D-02 DFR= 3.22D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -9.90D-02 DF= -5.83D-06 DXR= 5.82D-02 DFR= 7.50D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -5.32D-02 DF= -2.62D-06 DXR= 3.44D-02 DFR= 2.39D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -9.04D-03 DF= -8.90D-08 DXR= 5.68D-03 DFR= 7.45D-05 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Minimum is close to point 2 DX= 9.35D-02 DF= -3.76D-06 DXR= 5.52D-02 DFR= 3.06D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -8.87D-02 DF= -6.28D-06 DXR= 5.18D-02 DFR= 6.04D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -7.15D-02 DF= -2.93D-06 DXR= 4.68D-02 DFR= 4.25D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -4.64D-02 DF= -9.05D-07 DXR= 2.99D-02 DFR= 1.82D-03 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
Minimum is close to point 2 DX= 2.53D-02 DF= -9.12D-08 DXR= 1.66D-02 DFR= 2.74D-04 which will be used.
Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
LinEq1: Iter= 0 NonCon= 1 RMS=9.21D-04 Max=1.31D-02 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=2.96D-04 Max=1.88D-03 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=1.01D-05 Max=6.32D-05 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=1.96D-06 Max=1.16D-05 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=2.92D-07 Max=2.73D-06 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=4.54D-08 Max=3.27D-07 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=5.42D-09 Max=3.15D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 0 RMS=7.63D-10 Max=5.08D-09 NDo= 1
Linear equations converged to 1.513D-09 1.513D-08 after 7 iterations.
Accept linear search using points 1 and 2.
Minimum is close to point 2 DX= -8.27D-02 DF= -2.70D-06 DXR= 9.02D-02 DFR= 8.70D-03 which will be used.
LinEq1: Iter= 0 NonCon= 1 RMS=8.52D-05 Max=8.98D-04 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=3.17D-05 Max=3.28D-04 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=5.35D-06 Max=3.86D-05 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=9.96D-07 Max=8.50D-06 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.48D-07 Max=1.20D-06 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.53D-08 Max=1.38D-07 NDo= 1
LinEq1: Iter= 6 NonCon= 1 RMS=2.14D-09 Max=1.03D-08 NDo= 1
LinEq1: Iter= 7 NonCon= 0 RMS=2.45D-10 Max=1.53D-09 NDo= 1
Linear equations converged to 1.513D-09 1.513D-08 after 7 iterations.
Minimum is close to point 2 DX= 1.71D-02 DF= -1.08D-09 DXR= 1.68D-02 DFR= 2.82D-04 which will be used.
LinEq1: Iter= 0 NonCon= 1 RMS=1.11D-06 Max=1.41D-05 NDo= 1
LinEq1: Iter= 1 NonCon= 1 RMS=2.51D-07 Max=1.91D-06 NDo= 1
LinEq1: Iter= 2 NonCon= 1 RMS=5.01D-08 Max=3.41D-07 NDo= 1
LinEq1: Iter= 3 NonCon= 1 RMS=1.10D-08 Max=8.47D-08 NDo= 1
LinEq1: Iter= 4 NonCon= 1 RMS=1.62D-09 Max=1.38D-08 NDo= 1
LinEq1: Iter= 5 NonCon= 1 RMS=1.78D-10 Max=1.89D-09 NDo= 1
LinEq1: Iter= 6 NonCon= 0 RMS=2.15D-11 Max=1.09D-10 NDo= 1
Linear equations converged to 1.010D-10 1.010D-09 after 6 iterations.
SCF Done: E(UHF) = -51.9840874768 a.u. after 28 cycles
Convg = 0.4438D-07 96 Fock formations.
S**2 = 1.5594 -V/T = 1.9961
<Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 1.5594 S= 0.8451
<L.S>= 0.000000000000E+00
Annihilation of the first spin contaminant:
S**2 before annihilation 1.5594, after 0.7583
ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 5 IDoV=-2 UseB2=F ITyADJ=14
ICtDFT= 12500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
Range of M.O.s used for correlation: 3 30
NBasis= 30 NAE= 5 NBE= 4 NFC= 2 NFV= 0
NROrb= 28 NOA= 3 NOB= 2 NVA= 25 NVB= 26
Semi-Direct transformation.
ModeAB= 2 MOrb= 3 LenV= 423823991
LASXX= 7874 LTotXX= 7874 LenRXX= 7874
LTotAB= 9238 MaxLAS= 39060 LenRXY= 39060
NonZer= 43596 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 832854
MaxDsk= -1 SrtSym= F ITran= 4
JobTyp=1 Pass 1: I= 1 to 3.
(rs|ai) integrals will be sorted in core.
ModeAB= 2 MOrb= 2 LenV= 423823991
LASXX= 5586 LTotXX= 5586 LenRXX= 26040
LTotAB= 5223 MaxLAS= 26040 LenRXY= 5223
NonZer= 29064 LenScr= 785920 LnRSAI= 0
LnScr1= 0 LExtra= 0 Total= 817183
MaxDsk= -1 SrtSym= F ITran= 4
JobTyp=2 Pass 1: I= 1 to 2.
(rs|ai) integrals will be sorted in core.
Spin components of T(2) and E(2):
alpha-alpha T2 = 0.3217018251D-02 E2= -0.9793926968D-02
alpha-beta T2 = 0.2154311380D-01 E2= -0.5210849563D-01
beta-beta T2 = 0.1375553225D-02 E2= -0.2324677345D-02
ANorm= 0.1012983556D+01
E2 = -0.6422709995D-01 EUMP2 = -0.52048314576769D+02
(S**2,0)= 0.15594D+01 (S**2,1)= 0.15334D+01
E(PUHF)= -0.51992343389D+02 E(PMP2)= -0.52056438610D+02
Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=931595.
Iterations= 50 Convergence= 0.100D-06
Iteration Nr. 1
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
E(PMP3)= -0.52071818798D+02
MP4(R+Q)= 0.12014937D-02
E3= -0.15714056D-01 EUMP3= -0.52064028633D+02
E4(DQ)= -0.39890085D-02 UMP4(DQ)= -0.52068017641D+02
E4(SDQ)= -0.54491885D-02 UMP4(SDQ)= -0.52069477821D+02
DE(Corr)= -0.78769448E-01 E(Corr)= -52.062856924
NORM(A)= 0.10265158D+01
Iteration Nr. 2
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.85984316E-01 E(CORR)= -52.070071792 Delta=-7.21D-03
NORM(A)= 0.10511531D+01
Iteration Nr. 3
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.91905315E-01 E(CORR)= -52.075992792 Delta=-5.92D-03
NORM(A)= 0.11453356D+01
Iteration Nr. 4
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10173139 E(CORR)= -52.085818870 Delta=-9.83D-03
NORM(A)= 0.12052097D+01
Iteration Nr. 5
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10478861 E(CORR)= -52.088876082 Delta=-3.06D-03
NORM(A)= 0.12378521D+01
Iteration Nr. 6
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10661550 E(CORR)= -52.090702975 Delta=-1.83D-03
NORM(A)= 0.12254330D+01
Iteration Nr. 7
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10576592 E(CORR)= -52.089853396 Delta= 8.50D-04
NORM(A)= 0.12647242D+01
Iteration Nr. 8
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10823790 E(CORR)= -52.092325381 Delta=-2.47D-03
NORM(A)= 0.12466909D+01
Iteration Nr. 9
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10708100 E(CORR)= -52.091168477 Delta= 1.16D-03
NORM(A)= 0.12533653D+01
Iteration Nr. 10
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10744057 E(CORR)= -52.091528051 Delta=-3.60D-04
NORM(A)= 0.12501085D+01
Iteration Nr. 11
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722537 E(CORR)= -52.091312849 Delta= 2.15D-04
NORM(A)= 0.12509156D+01
Iteration Nr. 12
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10725954 E(CORR)= -52.091347018 Delta=-3.42D-05
NORM(A)= 0.12505394D+01
Iteration Nr. 13
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10723462 E(CORR)= -52.091322097 Delta= 2.49D-05
NORM(A)= 0.12504877D+01
Iteration Nr. 14
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722432 E(CORR)= -52.091311792 Delta= 1.03D-05
NORM(A)= 0.12504357D+01
Iteration Nr. 15
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722055 E(CORR)= -52.091308024 Delta= 3.77D-06
NORM(A)= 0.12503846D+01
Iteration Nr. 16
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10721772 E(CORR)= -52.091305199 Delta= 2.83D-06
NORM(A)= 0.12504286D+01
Iteration Nr. 17
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722149 E(CORR)= -52.091308968 Delta=-3.77D-06
NORM(A)= 0.12504518D+01
Iteration Nr. 18
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722280 E(CORR)= -52.091310273 Delta=-1.30D-06
NORM(A)= 0.12504723D+01
Iteration Nr. 19
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722401 E(CORR)= -52.091311482 Delta=-1.21D-06
NORM(A)= 0.12504765D+01
Iteration Nr. 20
**********************
DD1Dir will call FoFMem 1 times, MxPair= 16
NAB= 6 NAA= 3 NBB= 1.
DE(Corr)= -0.10722410 E(CORR)= -52.091311582 Delta=-9.95D-08
NORM(A)= 0.12504800D+01
Dominant configurations:
***********************
Spin Case I J A B Value
AA 4 7 -0.152699D+00
AA 5 8 0.101575D+00
BB 4 6 -0.585892D+00
ABAB 4 4 7 6 0.206761D+00
ABAB 4 4 6 5 0.139383D+00
ABAB 5 4 8 6 -0.145709D+00
Largest amplitude= 5.86D-01
Time for triples= 1.38 seconds.
T4(CCSD)= -0.68779261D-02
T5(CCSD)= 0.14598750D-02
CCSD(T)= -0.52096729633D+02
S**2, projected HF & approx projected MPn energies after annihilation of
unwanted spin states (see manual for definitions):
spins (S**2,0) (S**2,1) PUHF PMP2 PMP3 PMP4
annihilated
s+1 0.74499 0.75044 -51.992343 -52.056439 -52.071819
s+1,s+2 0.75000 0.75000 -51.991414 -52.055530 -52.070949
Discarding MO integrals.
**********************************************************************
Population analysis using the SCF density.
**********************************************************************
Orbital symmetries:
Alpha Orbitals:
Occupied (SG) (SG) (SG) (SG) (?A)
Virtual (?A) (SG) (?A) (?A) (SG) (PI) (PI) (SG) (SG) (SG)
(?A) (?A) (?B) (?B) (?B) (PI) (PI) (SG) (DLTA)
(DLTA) (PI) (PI) (SG) (SG) (SG)
Beta Orbitals:
Occupied (SG) (SG) (SG) (SG)
Virtual (?A) (SG) (?A) (?A) (?A) (SG) (PI) (SG) (PI) (SG)
(SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
(?B) (?B) (PI) (PI) (?B) (SG) (SG)
Unable to determine electronic state: an orbital has unidentified symmetry.
Alpha occ. eigenvalues -- -11.69113 -5.02062 -1.19895 -0.83132 -0.77661
Alpha virt. eigenvalues -- -0.29446 -0.17785 -0.10087 -0.07530 0.00546
Alpha virt. eigenvalues -- 0.19749 0.19911 0.24593 0.32667 0.41420
Alpha virt. eigenvalues -- 0.46540 0.53086 0.77297 0.77298 0.78957
Alpha virt. eigenvalues -- 0.78992 0.79919 1.15567 1.60425 1.60545
Alpha virt. eigenvalues -- 1.81233 1.83067 2.19167 2.58963 4.01796
Beta occ. eigenvalues -- -11.64791 -5.04434 -0.99923 -0.56843
Beta virt. eigenvalues -- -0.27257 -0.23589 -0.23535 -0.10145 -0.06954
Beta virt. eigenvalues -- -0.00175 0.18241 0.18516 0.18926 0.36969
Beta virt. eigenvalues -- 0.52159 0.55565 0.60385 0.74800 0.74804
Beta virt. eigenvalues -- 0.78971 0.80540 0.84060 1.17739 1.70918
Beta virt. eigenvalues -- 1.70958 1.90155 1.95129 2.28861 2.56461
Beta virt. eigenvalues -- 4.07831
Condensed to atoms (all electrons):
1 2
1 Be 3.155172 0.233637
2 C 0.233637 5.377555
Atomic-Atomic Spin Densities.
1 2
1 Be -0.861914 0.126766
2 C 0.126766 1.608383
Mulliken charges and spin densities:
1 2
1 Be 0.611191 -0.735148
2 C 0.388809 1.735148
Sum of Mulliken charges = 1.00000 1.00000
Mulliken charges and spin densities with hydrogens summed into heavy atoms:
1 2
1 Be 0.611191 -0.735148
2 C 0.388809 1.735148
Electronic spatial extent (au): <R**2>= 40.7416
Charge= 1.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 0.0000 Y= 0.0000 Z= -1.1152 Tot= 1.1152
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -7.1608 YY= -8.8903 ZZ= -6.5157
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= 0.3615 YY= -1.3680 ZZ= 1.0066
XY= 0.0000 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= 0.0000 YYY= 0.0000 ZZZ= 4.1469 XYY= 0.0000
XXY= 0.0000 XXZ= 1.6152 XZZ= 0.0000 YZZ= 0.0000
YYZ= 0.5971 XYZ= 0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -8.3988 YYYY= -11.1238 ZZZZ= -58.8079 XXXY= 0.0000
XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -3.2536 XXZZ= -10.0008 YYZZ= -11.1399
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000
N-N= 7.595195510288D+00 E-N=-1.335685371975D+02 KE= 5.218851364627D+01
Symmetry A1 KE= 5.087435914252D+01
Symmetry A2 KE= 3.782067739218D-33
Symmetry B1 KE= 5.240997109797D-32
Symmetry B2 KE= 1.314154503743D+00
1\1\GINC-N358\SP\UCCSD(T)-FC\6-31G(d)\C1Be1(1+,2)\RDJ3\13-May-2014\0\\
#CCSD(T)/6-31G* scf=xqc\\bec beryllium carbide triplet casno=57788940
state=1 config=1 method=112 basis=1\\1,2\Be,0,0.,0.,-1.003286\C,0,0.,0
.,0.668857\\Version=EM64L-G09RevD.01\HF=-51.9840875\MP2=-52.0483146\MP
3=-52.0640286\MP4D=-52.0692191\MP4DQ=-52.0680176\PUHF=-51.9923434\PMP2
-0=-52.0564386\PMP3-0=-52.0718188\MP4SDQ=-52.0694778\CCSD=-52.0913116\
CCSD(T)=-52.0967296\S2=1.559392\S2-1=1.533374\S2A=0.758334\RMSD=9.382e
-04\PG=C*V [C*(Be1C1)]\\@
IF YOU DON'T HAVE THE LAW - ARGUE THE FACTS.
IF YOU DON'T HAVE THE FACTS - ARGUE THE LAW.
IF YOU DON'T HAVE EITHER - POUND THE TABLE.
Job cpu time: 0 days 0 hours 0 minutes 44.2 seconds.
File lengths (MBytes): RWF= 13 Int= 0 D2E= 0 Chk= 1 Scr= 1
Normal termination of Gaussian 09 at Tue May 13 14:34:42 2014.