Skip to content
Snippets Groups Projects
bec.out 30.78 KiB
 Entering Gaussian System, Link 0=g09
 Initial command:
 /usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe "/tmp/rdj3/g09-21434/Gau-26733.inp" -scrdir="/tmp/rdj3/g09-21434/"
 Entering Link 1 = /usr/local/gaussian/g09.d01.em64t.legacy.linda/g09/l1.exe PID=     26734.
  
 Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013,
            Gaussian, Inc.  All Rights Reserved.
  
 This is part of the Gaussian(R) 09 program.  It is based on
 the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.),
 the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.),
 the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.),
 the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.),
 the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.),
 the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.),
 the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon
 University), and the Gaussian 82(TM) system (copyright 1983,
 Carnegie Mellon University). Gaussian is a federally registered
 trademark of Gaussian, Inc.
  
 This software contains proprietary and confidential information,
 including trade secrets, belonging to Gaussian, Inc.
  
 This software is provided under written license and may be
 used, copied, transmitted, or stored only in accord with that
 written license.
  
 The following legend is applicable only to US Government
 contracts under FAR:
  
                    RESTRICTED RIGHTS LEGEND
  
 Use, reproduction and disclosure by the US Government is
 subject to restrictions as set forth in subparagraphs (a)
 and (c) of the Commercial Computer Software - Restricted
 Rights clause in FAR 52.227-19.
  
 Gaussian, Inc.
 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492
  
  
 ---------------------------------------------------------------
 Warning -- This program may not be used in any manner that
 competes with the business of Gaussian, Inc. or will provide
 assistance to any competitor of Gaussian, Inc.  The licensee
 of this program is prohibited from giving any competitor of
 Gaussian, Inc. access to this program.  By using this program,
 the user acknowledges that Gaussian, Inc. is engaged in the
 business of creating and licensing software in the field of
 computational chemistry and represents and warrants to the
 licensee that it is not a competitor of Gaussian, Inc. and that
 it will not use this program in any manner prohibited above.
 ---------------------------------------------------------------
  

 Cite this work as:
 Gaussian 09, Revision D.01,
 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, 
 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, 
 G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, 
 A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, 
 M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, 
 Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., 
 J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, 
 K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, 
 K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, 
 M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, 
 V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, 
 O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, 
 R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, 
 P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, 
 O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, 
 and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.
 
 ******************************************
 Gaussian 09:  EM64L-G09RevD.01 24-Apr-2013
                13-May-2014 
 ******************************************
 %NProc=8
 Will use up to    8 processors via shared memory.
 %mem=424000000
 -----------------------
 #CCSD(T)/6-31G* scf=xqc
 -----------------------
 1/38=1/1;
 2/12=2,17=6,18=5,40=1/2;
 3/5=1,6=6,7=1,11=9,16=1,25=1,30=1/1,2,3;
 4//1;
 5/5=2,8=3,13=1,38=5/2,8;
 8/6=4,9=120000,10=2/1,4;
 9/5=7,14=2/13;
 6/7=2,8=2,9=2,10=2/1;
 99/5=1,9=1/99;
 ----------------------------------------------------------------------
 bec beryllium carbide triplet casno=57788940 state=1 config=1 method=1
 12 basis=1
 ----------------------------------------------------------------------
 Symbolic Z-matrix:
 Charge =  1 Multiplicity = 2
 BE                    0.        0.       -1.00329 
 C                     0.        0.        0.66886 
 
                          Input orientation:                          
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          4           0        0.000000    0.000000   -1.003286
      2          6           0        0.000000    0.000000    0.668857
 ---------------------------------------------------------------------
 Stoichiometry    CBe(1+,2)
 Framework group  C*V[C*(BeC)]
 Deg. of freedom     1
 Full point group                 C*V     NOp   4
 Largest Abelian subgroup         C2V     NOp   4
 Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                         
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          4           0        0.000000    0.000000   -1.003286
      2          6           0        0.000000    0.000000    0.668857
 ---------------------------------------------------------------------
 Rotational constants (GHZ):      0.0000000     35.1180430     35.1180430
 Standard basis: 6-31G(d) (6D, 7F)
 There are    16 symmetry adapted cartesian basis functions of A1  symmetry.
 There are     2 symmetry adapted cartesian basis functions of A2  symmetry.
 There are     6 symmetry adapted cartesian basis functions of B1  symmetry.
 There are     6 symmetry adapted cartesian basis functions of B2  symmetry.
 There are    16 symmetry adapted basis functions of A1  symmetry.
 There are     2 symmetry adapted basis functions of A2  symmetry.
 There are     6 symmetry adapted basis functions of B1  symmetry.
 There are     6 symmetry adapted basis functions of B2  symmetry.
    30 basis functions,    56 primitive gaussians,    30 cartesian basis functions
     5 alpha electrons        4 beta electrons
       nuclear repulsion energy         7.5951955103 Hartrees.
 NAtoms=    2 NActive=    2 NUniq=    2 SFac= 1.00D+00 NAtFMM=   60 NAOKFM=F Big=F
 Integral buffers will be    131072 words long.
 Raffenetti 2 integral format.
 Two-electron integral symmetry is turned on.
 One-electron integrals computed using PRISM.
 NBasis=    30 RedAO= T EigKep=  2.65D-02  NBF=    16     2     6     6
 NBsUse=    30 1.00D-06 EigRej= -1.00D+00 NBFU=    16     2     6     6
 ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=2 IRadAn=         4 AccDes= 0.00D+00
 Harris functional with IExCor=  205 and IRadAn=       4 diagonalized for initial guess.
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         4 IDoV= 1 UseB2=F ITyADJ=14
 ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=     500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
 Petite list used in FoFCou.
 Initial guess orbital symmetries:
 Alpha Orbitals:
       Occupied  (SG) (SG) (SG) (SG) (PI)
       Virtual   (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG) (SG)
                 (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG) (DLTA)
                 (DLTA) (PI) (PI) (SG) (SG) (SG)
 Beta  Orbitals:
       Occupied  (SG) (SG) (SG) (SG)
       Virtual   (PI) (PI) (SG) (PI) (PI) (SG) (PI) (PI) (SG) (SG)
                 (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
                 (DLTA) (DLTA) (PI) (PI) (SG) (SG) (SG)
 Initial guess <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.7500 S= 0.5000
 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946572.
 Requested convergence on RMS density matrix=1.00D-08 within  64 cycles.
 Requested convergence on MAX density matrix=1.00D-06.
 Requested convergence on             energy=1.00D-06.
 No special actions if energy rises.
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 Rare condition: small coef for last iteration:  0.000D+00
 >>>>>>>>>> Convergence criterion not met.
 SCF Done:  E(UHF) =  -51.9696612669     A.U. after   65 cycles
            NFock= 64  Conv=0.94D-03     -V/T= 1.9976
 <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 0.8575 S= 0.5524
 <L.S>= 0.000000000000E+00
 Annihilation of the first spin contaminant:
 S**2 before annihilation     0.8575,   after     0.7510
 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=946330.
 LinEq1:  Iter=  0 NonCon=     1 RMS=1.42D-04 Max=1.48D-03 NDo=     1
 AX will form     1 AO Fock derivatives at one time.
 LinEq1:  Iter=  1 NonCon=     1 RMS=5.43D-05 Max=4.09D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=1.85D-05 Max=1.88D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=2.80D-06 Max=1.69D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=5.39D-07 Max=2.83D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=6.35D-08 Max=4.16D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=8.12D-09 Max=4.66D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=9.71D-10 Max=6.01D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
 LinEq1:  Iter=  0 NonCon=     1 RMS=2.59D-04 Max=3.25D-03 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=6.80D-05 Max=4.10D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=4.38D-05 Max=6.03D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=8.87D-06 Max=9.41D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.23D-06 Max=7.61D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.28D-07 Max=6.18D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=2.01D-08 Max=1.20D-07 NDo=     1
 LinEq1:  Iter=  7 NonCon=     1 RMS=3.05D-09 Max=2.43D-08 NDo=     1
 LinEq1:  Iter=  8 NonCon=     0 RMS=4.20D-10 Max=2.92D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     8 iterations.
 LinEq1:  Iter=  0 NonCon=     1 RMS=4.55D-04 Max=5.62D-03 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=1.07D-04 Max=6.43D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=6.83D-05 Max=8.59D-04 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.61D-05 Max=1.66D-04 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=2.33D-06 Max=1.35D-05 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=2.39D-07 Max=1.01D-06 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=3.25D-08 Max=1.61D-07 NDo=     1
 LinEq1:  Iter=  7 NonCon=     1 RMS=4.93D-09 Max=2.96D-08 NDo=     1
 LinEq1:  Iter=  8 NonCon=     0 RMS=7.59D-10 Max=5.23D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     8 iterations.
 Incorrect curvature in search direction -- initial direction reversed.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  5 DX=  8.43D-02 DF= -5.24D-07 DXR=  3.39D-02 DFR=  1.15D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  2 and  3.
     Minimum is close to point  3 DX= -1.54D-01 DF= -1.48D-06 DXR=  9.97D-02 DFR=  7.94D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.46D-02 DF= -6.79D-07 DXR=  3.32D-02 DFR=  2.45D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.01D-02 DF= -7.44D-07 DXR=  3.23D-02 DFR=  2.13D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.08D-03 DF= -2.56D-08 DXR=  5.07D-03 DFR=  5.97D-05 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  9.61D-02 DF= -1.71D-06 DXR=  5.67D-02 DFR=  3.22D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -9.90D-02 DF= -5.83D-06 DXR=  5.82D-02 DFR=  7.50D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -5.32D-02 DF= -2.62D-06 DXR=  3.44D-02 DFR=  2.39D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -9.04D-03 DF= -8.90D-08 DXR=  5.68D-03 DFR=  7.45D-05 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  9.35D-02 DF= -3.76D-06 DXR=  5.52D-02 DFR=  3.06D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.87D-02 DF= -6.28D-06 DXR=  5.18D-02 DFR=  6.04D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -7.15D-02 DF= -2.93D-06 DXR=  4.68D-02 DFR=  4.25D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -4.64D-02 DF= -9.05D-07 DXR=  2.99D-02 DFR=  1.82D-03 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
     Minimum is close to point  2 DX=  2.53D-02 DF= -9.12D-08 DXR=  1.66D-02 DFR=  2.74D-04 which will be used.
 Gradient too large for Newton-Raphson -- use scaled steepest descent instead.
 LinEq1:  Iter=  0 NonCon=     1 RMS=9.21D-04 Max=1.31D-02 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=2.96D-04 Max=1.88D-03 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=1.01D-05 Max=6.32D-05 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.96D-06 Max=1.16D-05 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=2.92D-07 Max=2.73D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=4.54D-08 Max=3.27D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=5.42D-09 Max=3.15D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=7.63D-10 Max=5.08D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
     Accept linear search using points  1 and  2.
     Minimum is close to point  2 DX= -8.27D-02 DF= -2.70D-06 DXR=  9.02D-02 DFR=  8.70D-03 which will be used.
 LinEq1:  Iter=  0 NonCon=     1 RMS=8.52D-05 Max=8.98D-04 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=3.17D-05 Max=3.28D-04 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=5.35D-06 Max=3.86D-05 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=9.96D-07 Max=8.50D-06 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.48D-07 Max=1.20D-06 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.53D-08 Max=1.38D-07 NDo=     1
 LinEq1:  Iter=  6 NonCon=     1 RMS=2.14D-09 Max=1.03D-08 NDo=     1
 LinEq1:  Iter=  7 NonCon=     0 RMS=2.45D-10 Max=1.53D-09 NDo=     1
 Linear equations converged to 1.513D-09 1.513D-08 after     7 iterations.
     Minimum is close to point  2 DX=  1.71D-02 DF= -1.08D-09 DXR=  1.68D-02 DFR=  2.82D-04 which will be used.
 LinEq1:  Iter=  0 NonCon=     1 RMS=1.11D-06 Max=1.41D-05 NDo=     1
 LinEq1:  Iter=  1 NonCon=     1 RMS=2.51D-07 Max=1.91D-06 NDo=     1
 LinEq1:  Iter=  2 NonCon=     1 RMS=5.01D-08 Max=3.41D-07 NDo=     1
 LinEq1:  Iter=  3 NonCon=     1 RMS=1.10D-08 Max=8.47D-08 NDo=     1
 LinEq1:  Iter=  4 NonCon=     1 RMS=1.62D-09 Max=1.38D-08 NDo=     1
 LinEq1:  Iter=  5 NonCon=     1 RMS=1.78D-10 Max=1.89D-09 NDo=     1
 LinEq1:  Iter=  6 NonCon=     0 RMS=2.15D-11 Max=1.09D-10 NDo=     1
 Linear equations converged to 1.010D-10 1.010D-09 after     6 iterations.
 SCF Done:  E(UHF) =  -51.9840874768     a.u. after   28 cycles
            Convg  =    0.4438D-07                    96 Fock formations.
              S**2 =  1.5594                  -V/T =  1.9961
 <Sx>= 0.0000 <Sy>= 0.0000 <Sz>= 0.5000 <S**2>= 1.5594 S= 0.8451
 <L.S>= 0.000000000000E+00
 Annihilation of the first spin contaminant:
 S**2 before annihilation     1.5594,   after     0.7583
 ExpMin= 8.23D-02 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
 HarFok:  IExCor=  205 AccDes= 0.00D+00 IRadAn=         5 IDoV=-2 UseB2=F ITyADJ=14
 ICtDFT= 12500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
 Range of M.O.s used for correlation:     3    30
 NBasis=    30 NAE=     5 NBE=     4 NFC=     2 NFV=     0
 NROrb=     28 NOA=     3 NOB=     2 NVA=    25 NVB=    26
 Semi-Direct transformation.
 ModeAB=           2 MOrb=             3 LenV=     423823991
 LASXX=         7874 LTotXX=        7874 LenRXX=        7874
 LTotAB=        9238 MaxLAS=       39060 LenRXY=       39060
 NonZer=       43596 LenScr=      785920 LnRSAI=           0
 LnScr1=           0 LExtra=           0 Total=       832854
 MaxDsk=          -1 SrtSym=           F ITran=            4
 JobTyp=1 Pass  1:  I=   1 to   3.
 (rs|ai) integrals will be sorted in core.
 ModeAB=           2 MOrb=             2 LenV=     423823991
 LASXX=         5586 LTotXX=        5586 LenRXX=       26040
 LTotAB=        5223 MaxLAS=       26040 LenRXY=        5223
 NonZer=       29064 LenScr=      785920 LnRSAI=           0
 LnScr1=           0 LExtra=           0 Total=       817183
 MaxDsk=          -1 SrtSym=           F ITran=            4
 JobTyp=2 Pass  1:  I=   1 to   2.
 (rs|ai) integrals will be sorted in core.
 Spin components of T(2) and E(2):
     alpha-alpha T2 =       0.3217018251D-02 E2=     -0.9793926968D-02
     alpha-beta  T2 =       0.2154311380D-01 E2=     -0.5210849563D-01
     beta-beta   T2 =       0.1375553225D-02 E2=     -0.2324677345D-02
 ANorm=    0.1012983556D+01
 E2 =    -0.6422709995D-01 EUMP2 =    -0.52048314576769D+02
 (S**2,0)=  0.15594D+01           (S**2,1)=  0.15334D+01
 E(PUHF)=      -0.51992343389D+02        E(PMP2)=      -0.52056438610D+02
 Keep R2 and R3 ints in memory in symmetry-blocked form, NReq=931595.
 Iterations=  50 Convergence= 0.100D-06
 Iteration Nr.   1
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 E(PMP3)=      -0.52071818798D+02
 MP4(R+Q)=  0.12014937D-02
 E3=       -0.15714056D-01        EUMP3=      -0.52064028633D+02
 E4(DQ)=   -0.39890085D-02        UMP4(DQ)=   -0.52068017641D+02
 E4(SDQ)=  -0.54491885D-02        UMP4(SDQ)=  -0.52069477821D+02
 DE(Corr)= -0.78769448E-01 E(Corr)=     -52.062856924    
 NORM(A)=   0.10265158D+01
 Iteration Nr.   2
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.85984316E-01 E(CORR)=     -52.070071792     Delta=-7.21D-03
 NORM(A)=   0.10511531D+01
 Iteration Nr.   3
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.91905315E-01 E(CORR)=     -52.075992792     Delta=-5.92D-03
 NORM(A)=   0.11453356D+01
 Iteration Nr.   4
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10173139     E(CORR)=     -52.085818870     Delta=-9.83D-03
 NORM(A)=   0.12052097D+01
 Iteration Nr.   5
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10478861     E(CORR)=     -52.088876082     Delta=-3.06D-03
 NORM(A)=   0.12378521D+01
 Iteration Nr.   6
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10661550     E(CORR)=     -52.090702975     Delta=-1.83D-03
 NORM(A)=   0.12254330D+01
 Iteration Nr.   7
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10576592     E(CORR)=     -52.089853396     Delta= 8.50D-04
 NORM(A)=   0.12647242D+01
 Iteration Nr.   8
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10823790     E(CORR)=     -52.092325381     Delta=-2.47D-03
 NORM(A)=   0.12466909D+01
 Iteration Nr.   9
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10708100     E(CORR)=     -52.091168477     Delta= 1.16D-03
 NORM(A)=   0.12533653D+01
 Iteration Nr.  10
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10744057     E(CORR)=     -52.091528051     Delta=-3.60D-04
 NORM(A)=   0.12501085D+01
 Iteration Nr.  11
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722537     E(CORR)=     -52.091312849     Delta= 2.15D-04
 NORM(A)=   0.12509156D+01
 Iteration Nr.  12
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10725954     E(CORR)=     -52.091347018     Delta=-3.42D-05
 NORM(A)=   0.12505394D+01
 Iteration Nr.  13
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10723462     E(CORR)=     -52.091322097     Delta= 2.49D-05
 NORM(A)=   0.12504877D+01
 Iteration Nr.  14
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722432     E(CORR)=     -52.091311792     Delta= 1.03D-05
 NORM(A)=   0.12504357D+01
 Iteration Nr.  15
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722055     E(CORR)=     -52.091308024     Delta= 3.77D-06
 NORM(A)=   0.12503846D+01
 Iteration Nr.  16
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10721772     E(CORR)=     -52.091305199     Delta= 2.83D-06
 NORM(A)=   0.12504286D+01
 Iteration Nr.  17
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722149     E(CORR)=     -52.091308968     Delta=-3.77D-06
 NORM(A)=   0.12504518D+01
 Iteration Nr.  18
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722280     E(CORR)=     -52.091310273     Delta=-1.30D-06
 NORM(A)=   0.12504723D+01
 Iteration Nr.  19
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722401     E(CORR)=     -52.091311482     Delta=-1.21D-06
 NORM(A)=   0.12504765D+01
 Iteration Nr.  20
 **********************
 DD1Dir will call FoFMem   1 times, MxPair=        16
 NAB=     6 NAA=     3 NBB=     1.
 DE(Corr)= -0.10722410     E(CORR)=     -52.091311582     Delta=-9.95D-08
 NORM(A)=   0.12504800D+01
 Dominant configurations:
 ***********************
 Spin Case        I    J    A    B          Value
    AA            4         7           -0.152699D+00
    AA            5         8            0.101575D+00
    BB            4         6           -0.585892D+00
   ABAB           4    4    7    6       0.206761D+00
   ABAB           4    4    6    5       0.139383D+00
   ABAB           5    4    8    6      -0.145709D+00
 Largest amplitude= 5.86D-01
 Time for triples=        1.38 seconds.
 T4(CCSD)= -0.68779261D-02
 T5(CCSD)=  0.14598750D-02
 CCSD(T)= -0.52096729633D+02

 S**2, projected HF & approx projected MPn energies after annihilation of
 unwanted spin states (see manual for definitions):

 spins       (S**2,0) (S**2,1)    PUHF        PMP2        PMP3        PMP4
 annihilated
 s+1         0.74499  0.75044  -51.992343  -52.056439  -52.071819
 s+1,s+2     0.75000  0.75000  -51.991414  -52.055530  -52.070949

 Discarding MO integrals.

 **********************************************************************

            Population analysis using the SCF density.

 **********************************************************************

 Orbital symmetries:
 Alpha Orbitals:
       Occupied  (SG) (SG) (SG) (SG) (?A)
       Virtual   (?A) (SG) (?A) (?A) (SG) (PI) (PI) (SG) (SG) (SG)
                 (?A) (?A) (?B) (?B) (?B) (PI) (PI) (SG) (DLTA)
                 (DLTA) (PI) (PI) (SG) (SG) (SG)
 Beta  Orbitals:
       Occupied  (SG) (SG) (SG) (SG)
       Virtual   (?A) (SG) (?A) (?A) (?A) (SG) (PI) (SG) (PI) (SG)
                 (SG) (PI) (PI) (DLTA) (DLTA) (PI) (PI) (SG) (SG)
                 (?B) (?B) (PI) (PI) (?B) (SG) (SG)
 Unable to determine electronic state:  an orbital has unidentified symmetry.
 Alpha  occ. eigenvalues --  -11.69113  -5.02062  -1.19895  -0.83132  -0.77661
 Alpha virt. eigenvalues --   -0.29446  -0.17785  -0.10087  -0.07530   0.00546
 Alpha virt. eigenvalues --    0.19749   0.19911   0.24593   0.32667   0.41420
 Alpha virt. eigenvalues --    0.46540   0.53086   0.77297   0.77298   0.78957
 Alpha virt. eigenvalues --    0.78992   0.79919   1.15567   1.60425   1.60545
 Alpha virt. eigenvalues --    1.81233   1.83067   2.19167   2.58963   4.01796
  Beta  occ. eigenvalues --  -11.64791  -5.04434  -0.99923  -0.56843
  Beta virt. eigenvalues --   -0.27257  -0.23589  -0.23535  -0.10145  -0.06954
  Beta virt. eigenvalues --   -0.00175   0.18241   0.18516   0.18926   0.36969
  Beta virt. eigenvalues --    0.52159   0.55565   0.60385   0.74800   0.74804
  Beta virt. eigenvalues --    0.78971   0.80540   0.84060   1.17739   1.70918
  Beta virt. eigenvalues --    1.70958   1.90155   1.95129   2.28861   2.56461
  Beta virt. eigenvalues --    4.07831
          Condensed to atoms (all electrons):
               1          2
     1  Be   3.155172   0.233637
     2  C    0.233637   5.377555
          Atomic-Atomic Spin Densities.
               1          2
     1  Be  -0.861914   0.126766
     2  C    0.126766   1.608383
 Mulliken charges and spin densities:
               1          2
     1  Be   0.611191  -0.735148
     2  C    0.388809   1.735148
 Sum of Mulliken charges =   1.00000   1.00000
 Mulliken charges and spin densities with hydrogens summed into heavy atoms:
               1          2
     1  Be   0.611191  -0.735148
     2  C    0.388809   1.735148
 Electronic spatial extent (au):  <R**2>=             40.7416
 Charge=              1.0000 electrons
 Dipole moment (field-independent basis, Debye):
    X=              0.0000    Y=              0.0000    Z=             -1.1152  Tot=              1.1152
 Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -7.1608   YY=             -8.8903   ZZ=             -6.5157
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=              0.3615   YY=             -1.3680   ZZ=              1.0066
   XY=              0.0000   XZ=              0.0000   YZ=              0.0000
 Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=              0.0000  YYY=              0.0000  ZZZ=              4.1469  XYY=              0.0000
  XXY=              0.0000  XXZ=              1.6152  XZZ=              0.0000  YZZ=              0.0000
  YYZ=              0.5971  XYZ=              0.0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):
 XXXX=             -8.3988 YYYY=            -11.1238 ZZZZ=            -58.8079 XXXY=              0.0000
 XXXZ=              0.0000 YYYX=              0.0000 YYYZ=              0.0000 ZZZX=              0.0000
 ZZZY=              0.0000 XXYY=             -3.2536 XXZZ=            -10.0008 YYZZ=            -11.1399
 XXYZ=              0.0000 YYXZ=              0.0000 ZZXY=              0.0000
 N-N= 7.595195510288D+00 E-N=-1.335685371975D+02  KE= 5.218851364627D+01
 Symmetry A1   KE= 5.087435914252D+01
 Symmetry A2   KE= 3.782067739218D-33
 Symmetry B1   KE= 5.240997109797D-32
 Symmetry B2   KE= 1.314154503743D+00
 1\1\GINC-N358\SP\UCCSD(T)-FC\6-31G(d)\C1Be1(1+,2)\RDJ3\13-May-2014\0\\
 #CCSD(T)/6-31G* scf=xqc\\bec beryllium carbide triplet casno=57788940 
 state=1 config=1 method=112 basis=1\\1,2\Be,0,0.,0.,-1.003286\C,0,0.,0
 .,0.668857\\Version=EM64L-G09RevD.01\HF=-51.9840875\MP2=-52.0483146\MP
 3=-52.0640286\MP4D=-52.0692191\MP4DQ=-52.0680176\PUHF=-51.9923434\PMP2
 -0=-52.0564386\PMP3-0=-52.0718188\MP4SDQ=-52.0694778\CCSD=-52.0913116\
 CCSD(T)=-52.0967296\S2=1.559392\S2-1=1.533374\S2A=0.758334\RMSD=9.382e
 -04\PG=C*V [C*(Be1C1)]\\@


 IF YOU DON'T HAVE THE LAW - ARGUE THE FACTS.
 IF YOU DON'T HAVE THE FACTS - ARGUE THE LAW.
 IF YOU DON'T HAVE EITHER - POUND THE TABLE.
 Job cpu time:       0 days  0 hours  0 minutes 44.2 seconds.
 File lengths (MBytes):  RWF=     13 Int=      0 D2E=      0 Chk=      1 Scr=      1
 Normal termination of Gaussian 09 at Tue May 13 14:34:42 2014.