Commit ef591291 authored by Lauri Himanen's avatar Lauri Himanen
Browse files

Now the YAML output of BigDFT is read one piece at a time.

parent 4dcb479c
Pipeline #8490 failed with stage
in 5 minutes and 46 seconds
import re
import logging
import numpy as np
from yaml import load
from yaml import CLoader as Loader, CDumper as Dumper
except ImportError:
from yaml import Loader, Dumper
from nomadcore.baseclasses import BasicParser
from yaml import Loader
from yaml import ScalarNode, SequenceNode, MappingNode, MappingEndEvent
from nomadcore.baseclasses import AbstractBaseParser
LOGGER = logging.getLogger("nomad")
class BigDFTMainParser(BasicParser):
class BigDFTMainParser(AbstractBaseParser):
"""The main parser class that is called for all run types. Parses the NWChem
output file.
......@@ -23,16 +20,56 @@ class BigDFTMainParser(BasicParser):
def parse(self):
"""The output file of a BigDFT run is a YAML document. Here we directly
parse this document with an existing YAML library, and push its
contents into the backend. Currently this function will read the whole
document into memory. If this leads to memory issues with large files,
this function will need to be changed to a token base version.
contents into the backend. This function will read the document in
smaller pieces, thus preventing the parser from opening too large files
directly into memory.
with open(self.file_path, "r") as fin:
data = load(fin, Loader=Loader)
# Parse SCF information
scf_data = data["Ground State Optimization"]
# Open default sections and output default information
section_run_id = self.backend.openSection("section_run")
section_system_id = self.backend.openSection("section_system")
section_method_id = self.backend.openSection("section_method")
self.backend.addValue("program_name", "BigDFT")
loader = Loader(fin)
generator = self.generate_root_nodes(loader)
# Go through all the keys in the mapping, and call an appropriate
# function on the value.
for key, value in generator:
if key == "Version Number":
self.backend.addValue("program_version", value)
# Close default sections
self.backend.closeSection("section_method", section_method_id)
self.backend.closeSection("section_system", section_system_id)
self.backend.closeSection("section_run", section_run_id)
def generate_root_nodes(self, loader):
# Ignore the first two events
loader.get_event() # StreamStarEvetn
loader.get_event() # DocumentStartEvent
start_event = loader.get_event() # MappingStartEvent
tag = start_event.tag
# This is the root mapping that contains everything
node = MappingNode(tag, [],
start_event.start_mark, None,
while not loader.check_event(MappingEndEvent):
key = loader.construct_scalar(loader.compose_node(node, None))
value = loader.compose_node(node, key)
if isinstance(value, MappingNode):
value = loader.construct_mapping(value)
elif isinstance(value, SequenceNode):
value = loader.construct_sequence(value)
elif isinstance(value, ScalarNode):
value = loader.construct_scalar(value)
yield (key, value)
def scf(self, scf):
"""Parse the SCF loop information.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment