"description":"Cutoff type for the calculation of the bare Coulomb potential: none, 0d, 1d, 2d. See Rozzi et al., PRB 73, 205119 (2006)",
"dtypeStr":"C",
"name":"gw_bare_coulomb_cutofftype",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Maximum G for the pw basis for the Coulomb potential.",
"dtypeStr":"f",
"name":"gw_bare_coulomb_gmax",
"shape":[],
"superNames":[
"section_method"
],
"units":"m^-1"
},{
"description":"Auxillary basis set used for non-local operators: mixed - mixed basis set, Kotani and Schilfgaarde, Solid State Comm. 121, 461 (2002).",
"dtypeStr":"C",
"name":"gw_basis_set",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"It specifies whether the core states are treated in the GW calculation: all - All electron calculation; val - Valence electron only calculation; vab - Core electrons are excluded from the mixed product basis; xal - All electron treatment of the exchange self-energy only",
"dtypeStr":"C",
"name":"gw_core_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Frequency integration grid type for the correlational self energy: 'eqdis' - equidistant frequencies from 0 to freqmax; 'gaulag' - Gauss-Laguerre quadrature from 0 to infinity; 'gauleg' - Gauss-Legendre quadrature from 0 to freqmax; 'gaule2' (default) - double Gauss-Legendre quadrature from 0 to freqmax and from freqmax to infinity.",
"dtypeStr":"C",
"name":"gw_frequency_grid_type",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Maximum frequency for the calculation of the self energy.",
"dtypeStr":"f",
"name":"gw_max_frequency",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Cut-off parameter for the truncation of the expansion of the plane waves in the interstitial region.",
"dtypeStr":"f",
"name":"gw_mixed_basis_gmax",
"shape":[],
"superNames":[
"section_method"
],
"units":"m^-1"
},{
"description":"Maximum l value used for the radial functions within the muffin-tin.",
"dtypeStr":"i",
"name":"gw_mixed_basis_lmax",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Eigenvalue threshold below which the egenvectors are discarded in the construction of the radial basis set.",
"dtypeStr":"f",
"name":"gw_mixed_basis_tolerance",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"k/q-point grid size used in the GW calculation.",
"dtypeStr":"i",
"name":"gw_ngridq",
"shape":[
3
],
"superNames":[
"section_method"
]
},{
"description":"Number of frequency points used in the calculation of the self energy.",
"dtypeStr":"i",
"name":"gw_number_of_frequencies",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of empty states used to compute the polarizability P",
"description":"Methods to solve the quasi-particle equation: 'linearization', 'self-consistent'",
"dtypeStr":"C",
"name":"gw_qp_equation_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Linearization prefactor",
"dtypeStr":"f",
"name":"gw_qp_linearization_prefactor",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_eigenvalues"
]
},{
"description":"Type of volume averaging for the dynamically screened Coulomb potential: isotropic - Simple averaging along a specified direction using only diagonal components of the dielectric tensor; anisotropic - Anisotropic screening by C. Freysoldt et al., CPC 176, 1-13 (2007)",
"dtypeStr":"C",
"name":"gw_screened_coulomb_volume_average",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Model used to calculate the dinamically-screened Coulomb potential: 'rpa' - Full-frequency random-phase approximation; 'ppm' - Godby-Needs plasmon-pole model Godby and Needs, Phys. Rev. Lett. 62, 1169 (1989); 'ppm_hl' - Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986); 'ppm_lh' - von der Linden and P. Horsh, Phys. Rev. B 37, 8351 (1988); 'ppm_fe' - Farid and Engel, Phys. Rev. B 47,15931 (1993); 'cdm' - Contour deformation method, Phys. Rev. B 67, 155208 (2003).)",
"dtypeStr":"C",
"name":"gw_screened_Coulomb",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Models for the correlation self-energy analytical continuation: 'pade' - Pade's approximant (by H. J. Vidberg and J. W. Serence, J. Low Temp. Phys. 29, 179 (1977)); 'mpf' - Multi-Pole Fitting (by H. N Rojas, R. W. Godby and R. J. Needs, Phys. Rev. Lett. 74, 1827 (1995)); 'cd' - contour deformation; 'ra' - real axis",
"description":"Number of empty states to be used to calculate the correlation self energy.",
"dtypeStr":"i",
"name":"gw_self_energy_c_number_of_empty_states",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of poles used in the analytical continuation.",
"dtypeStr":"i",
"kindStr":"type_dimension",
"name":"gw_self_energy_c_number_of_poles",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Diagonal matrix elements of the correlation self-energy",
"dtypeStr":"f",
"name":"gw_self_energy_c",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"Treatment of the integrable singular terms in the calculation of the self energy. Values: 'mpb' - Auxiliary function method by S. Massidda, M. Posternak, and A. Baldereschi, PRB 48, 5058 (1993); 'crg' - Auxiliary function method by P. Carrier, S. Rohra, and A. Goerling, PRB 75, 205126 (2007).",
"dtypeStr":"C",
"name":"gw_self_energy_singularity_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Diagonal matrix elements of the exchange self-energy",
"dtypeStr":"f",
"name":"gw_self_energy_x",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"Exchange-correlation functional of the ground-state calculation. See XC_functional list at https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/XC-functional",
"dtypeStr":"C",
"name":"gw_starting_point",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"GW methodology: exciting test variable",
"dtypeStr":"C",
"name":"gw_type_test",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"GW methodology: G0W0; ev-scGW: (eigenvalues self-consistent GW) – Phys.Rev.B 34, 5390 (1986); qp-scGW: (quasi-particle self-consistent GW) – Phys. Rev. Lett. 96, 226402 (2006) scGW0: (self-consistent G with fixed W0) – Phys.Rev.B 54, 8411 (1996); scG0W: (self-consistent W with fixed G0); scGW: (self-consistent GW) – Phys. Rev. B 88, 075105 (2013)",
"dtypeStr":"C",
"name":"gw_type",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Diagonal matrix elements of the exchange-correlation potential ",
"dtypeStr":"f",
"name":"gw_xc_potential",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"List of the indexes involved in this interaction. The fist atom has index 1, the last atom index number_of_topology_atoms.",
"dtypeStr":"i",
...
...
@@ -707,12 +940,16 @@
"description":"Some parameters that describe a constraint",
"kindStr":"type_abstract_document_content",
"name":"settings_constraint",
"superNames":[]
"superNames":[
"settings_potential_energy_surface"
]
},{
"description":"Some parameters that describe a bonded interaction.",
"kindStr":"type_abstract_document_content",
"name":"settings_interaction",
"superNames":[]
"superNames":[
"settings_potential_energy_surface"
]
},{
"description":"A meta info whose corresponding data has been shortened",
"dtypeStr":"C",
...
...
@@ -952,238 +1189,5 @@
"superNames":[
"section_excited_states"
]
},{
"description":"Linearization prefactor",
"dtypeStr":"f",
"name":"gw_qp_linearization_prefactor",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_eigenvalues"
]
},{
"description":"Diagonal matrix elements of the exchange self-energy",
"dtypeStr":"f",
"name":"gw_self_energy_x",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"Diagonal matrix elements of the exchange-correlation potential ",
"dtypeStr":"f",
"name":"gw_xc_potential",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"Diagonal matrix elements of the correlation self-energy",
"dtypeStr":"f",
"name":"gw_self_energy_c",
"shape":[
"number_of_spin_channels",
"number_of_eigenvalues_kpoints",
"number_of_eigenvalues"
],
"superNames":[
"section_single_configuration_calculation"
],
"units":"J"
},{
"description":"Treatment of the integrable singular terms in the calculation of the self energy. Values: 'mpb' - Auxiliary function method by S. Massidda, M. Posternak, and A. Baldereschi, PRB 48, 5058 (1993); 'crg' - Auxiliary function method by P. Carrier, S. Rohra, and A. Goerling, PRB 75, 205126 (2007).",
"dtypeStr":"C",
"name":"gw_self_energy_singularity_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Methods to solve the quasi-particle equation: 'linearization', 'self-consistent'",
"dtypeStr":"C",
"name":"gw_qp_equation_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Models for the correlation self-energy analytical continuation: 'pade' - Pade's approximant (by H. J. Vidberg and J. W. Serence, J. Low Temp. Phys. 29, 179 (1977)); 'mpf' - Multi-Pole Fitting (by H. N Rojas, R. W. Godby and R. J. Needs, Phys. Rev. Lett. 74, 1827 (1995)); 'cd' - contour deformation; 'ra' - real axis",
"description":"Maximum frequency for the calculation of the self energy.",
"dtypeStr":"f",
"name":"gw_max_frequency",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of frequency points used in the calculation of the self energy.",
"dtypeStr":"i",
"name":"gw_number_of_frequencies",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Frequency integration grid type for the correlational self energy: 'eqdis' - equidistant frequencies from 0 to freqmax; 'gaulag' - Gauss-Laguerre quadrature from 0 to infinity; 'gauleg' - Gauss-Legendre quadrature from 0 to freqmax; 'gaule2' (default) - double Gauss-Legendre quadrature from 0 to freqmax and from freqmax to infinity.",
"dtypeStr":"C",
"name":"gw_frequency_grid_type",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Model used to calculate the dinamically-screened Coulomb potential: 'rpa' - Full-frequency random-phase approximation; 'ppm' - Godby-Needs plasmon-pole model Godby and Needs, Phys. Rev. Lett. 62, 1169 (1989); 'ppm_hl' - Hybertsen and Louie, Phys. Rev. B 34, 5390 (1986); 'ppm_lh' - von der Linden and P. Horsh, Phys. Rev. B 37, 8351 (1988); 'ppm_fe' - Farid and Engel, Phys. Rev. B 47,15931 (1993); 'cdm' - Contour deformation method, Phys. Rev. B 67, 155208 (2003).)",
"dtypeStr":"C",
"name":"gw_screened_Coulomb",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"It specifies whether the core states are treated in the GW calculation: all - All electron calculation; val - Valence electron only calculation; vab - Core electrons are excluded from the mixed product basis; xal - All electron treatment of the exchange self-energy only",
"dtypeStr":"C",
"name":"gw_core_treatment",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Cutoff type for the calculation of the bare Coulomb potential: none, 0d, 1d, 2d. See Rozzi et al., PRB 73, 205119 (2006)",
"dtypeStr":"C",
"name":"gw_bare_coulomb_cutofftype",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Type of volume averaging for the dynamically screened Coulomb potential: isotropic - Simple averaging along a specified direction using only diagonal components of the dielectric tensor; anisotropic - Anisotropic screening by C. Freysoldt et al., CPC 176, 1-13 (2007)",
"dtypeStr":"C",
"name":"gw_screened_coulomb_volume_average",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Exchange-correlation functional of the ground-state calculation. See XC_functional list at https://gitlab.mpcdf.mpg.de/nomad-lab/nomad-meta-info/wikis/metainfo/XC-functional",
"dtypeStr":"C",
"name":"gw_starting_point",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of poles used in the analytical continuation.",
"dtypeStr":"i",
"kindStr":"type_dimension",
"name":"gw_self_energy_c_number_of_poles",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Maximum G for the pw basis for the Coulomb potential.",
"dtypeStr":"f",
"name":"gw_bare_coulomb_gmax",
"shape":[],
"superNames":[
"section_method"
],
"units":"m^-1"
},{
"description":"Cut-off parameter for the truncation of the expansion of the plane waves in the interstitial region.",
"dtypeStr":"f",
"name":"gw_mixed_basis_gmax",
"shape":[],
"superNames":[
"section_method"
],
"units":"m^-1"
},{
"description":"Eigenvalue threshold below which the egenvectors are discarded in the construction of the radial basis set.",
"dtypeStr":"f",
"name":"gw_mixed_basis_tolerance",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Maximum l value used for the radial functions within the muffin-tin.",
"dtypeStr":"i",
"name":"gw_mixed_basis_lmax",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Auxillary basis set used for non-local operators: mixed - mixed basis set, Kotani and Schilfgaarde, Solid State Comm. 121, 461 (2002).",
"dtypeStr":"C",
"name":"gw_basis_set",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of empty states to be used to calculate the correlation self energy.",
"dtypeStr":"i",
"name":"gw_self_energy_c_number_of_empty_states",
"shape":[],
"superNames":[
"section_method"
]
},{
"description":"Number of empty states used to compute the polarizability P",
"description":"repository pid of this calculation",
"dtypeStr":"C",
"name":"calculation_pid",
"shape":[],
"superNames":[
"section_calculation_info"
]
},{
"description":"URL used to reference an externally stored calculation. The kind of relationship between the present and the referenced section_single_configuration_calculation is specified by calculation_to_calculation_kind.",
"dtypeStr":"C",
...
...
@@ -1832,6 +1841,14 @@
"superNames":[
"section_system"
]
},{
"description":"nomad uri identifying the main file corresponding to this calculation",
"dtypeStr":"C",
"name":"main_file_uri",
"shape":[],
"superNames":[
"section_calculation_info"
]
},{
"description":"An array of the dimension of number_of_atoms where each atom (identified by the index in the array) is assigned to an atom-centered basis set, for this section_single_configuration_calculation. The actual definition of the atom-centered basis set is in the section_basis_set_atom_centered that is referred to by this metadata.",
"dtypeStr":"r",
...
...
@@ -2355,6 +2372,22 @@
"superNames":[
"accessory_info"
]
},{
"description":"id of the parser used to extract this information",
"dtypeStr":"C",
"name":"parser_id",
"shape":[],
"superNames":[
"section_calculation_info"
]
},{
"description":"name of the parser used to extract this information",
"dtypeStr":"C",
"name":"parser_name",
"shape":[],
"superNames":[
"section_calculation_info"
]
},{
"description":"This field is used for debugging messages of the parsing program associated with a run, see section_run.",
"dtypeStr":"C",
...
...
@@ -2771,6 +2804,11 @@
"superNames":[
"section_single_configuration_calculation"
]
},{
"description":"Information on this calculation (main file)",
"kindStr":"type_section",
"name":"section_calculation_info",
"superNames":[]
},{
"description":"Section that describes the relationship between different section_single_configuration_calculation sections.\n\nFor instance, one calculation is a perturbation performed using a self-consistent field (SCF) calculation as starting point, or a simulated system is partitioned in regions with different but connected Hamiltonians (e.g., QM/MM, or a region treated via Kohn-Sham DFT embedded into a region treated via orbital-free DFT).\n\nThe kind of relationship between the calculation defined in this section and the referenced one is described by calculation_to_calculation_kind. The referenced section_single_configuration_calculation is identified via calculation_to_calculation_ref (typically used for a section_single_configuration_calculation in the same section_run) or calculation_to_calculation_external_url.",
"kindStr":"type_section",
...
...
@@ -3050,7 +3088,7 @@
"kindStr":"type_abstract_document_content",
"name":"settings_geometry_optimization",
"superNames":[
"section_sampling_method"
"settings_sampling"
]
},{
"description":"Contains parameters for the GW-method in the post Hartree-Fock step, that expands the self-energy in terms of the single particle Green's function $G$ and the screened Coulomb interaction $W$.",
...
...
@@ -3071,7 +3109,7 @@
"kindStr":"type_abstract_document_content",
"name":"settings_k_points",
"superNames":[
"section_method"
"settings_potential_energy_surface"
]
},{
"description":"Contains parameters for the multi-configurational self-consistent-field (MCSCF) method.",