Skip to content
Snippets Groups Projects
Commit 7deec04f authored by Sebastian Eibl's avatar Sebastian Eibl
Browse files

further tests on gpu

parent e42b5757
No related branches found
No related tags found
No related merge requests found
// Copyright 2021 Thomas A. R. Purcell
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gtest/gtest.h>
#include <random>
#include "loss_function/RMSEGPU.hpp"
#include "mpi_interface/MPI_Interface.hpp"
namespace
{
class RMSEGPUTest : public ::testing::Test
{
protected:
void SetUp() override
{
mpi_setup::init_mpi_env();
_task_sizes_train = {80};
_task_sizes_test = {20};
node_value_arrs::initialize_values_arr(_task_sizes_train, _task_sizes_test, 2, 2, false);
node_value_arrs::initialize_d_matrix_arr();
node_value_arrs::resize_d_matrix_arr(2);
std::vector<double> value_1(_task_sizes_train[0], 0.0);
std::vector<double> value_2(_task_sizes_train[0], 0.0);
std::vector<double> test_value_1(_task_sizes_test[0], 0.0);
std::vector<double> test_value_2(_task_sizes_test[0], 0.0);
std::default_random_engine generator(0);
std::uniform_real_distribution<double> distribution_feats(-50.0, 50.0);
std::uniform_real_distribution<double> distribution_params(-2.50, 2.50);
for (int ii = 0; ii < _task_sizes_train[0]; ++ii)
{
value_1[ii] = distribution_feats(generator);
value_2[ii] = distribution_feats(generator);
}
for (int ii = 0; ii < _task_sizes_test[0]; ++ii)
{
test_value_1[ii] = distribution_feats(generator);
test_value_2[ii] = distribution_feats(generator);
}
_phi.push_back(std::make_shared<FeatureNode>(0, "A", value_1, test_value_1, Unit("m")));
_phi.push_back(std::make_shared<FeatureNode>(1, "B", value_2, test_value_2, Unit("m")));
_model_phi.push_back(std::make_shared<ModelNode>(_phi[0]));
_model_phi.push_back(std::make_shared<ModelNode>(_phi[1]));
std::copy_n(value_1.data(), _task_sizes_train[0], node_value_arrs::get_d_matrix_ptr(0));
std::copy_n(value_2.data(), _task_sizes_train[0], node_value_arrs::get_d_matrix_ptr(1));
double a0 = distribution_params(generator);
double a1 = distribution_params(generator);
double c0 = distribution_params(generator);
_prop_train.resize(_task_sizes_train[0], 0.0);
std::transform(value_1.begin(),
value_1.end(),
value_2.begin(),
_prop_train.begin(),
[=](double v0, double v1) { return c0 + a0 * v0 + a1 * v1; });
_prop_test.resize(_task_sizes_test[0], 0.0);
std::transform(test_value_1.begin(),
test_value_1.end(),
test_value_2.begin(),
_prop_test.begin(),
[=](double v0, double v1) { return c0 + a0 * v0 + a1 * v1; });
_prop_train_no_bias.resize(_task_sizes_train[0], 0.0);
std::transform(value_1.begin(),
value_1.end(),
value_2.begin(),
_prop_train_no_bias.begin(),
[=](double v0, double v1) { return a0 * v0 + a1 * v1; });
_prop_test_no_bias.resize(_task_sizes_test[0], 0.0);
std::transform(test_value_1.begin(),
test_value_1.end(),
test_value_2.begin(),
_prop_test_no_bias.begin(),
[=](double v0, double v1) { return a0 * v0 + a1 * v1; });
}
void TearDown() override { node_value_arrs::finalize_values_arr(); }
std::vector<node_ptr> _phi;
std::vector<model_node_ptr> _model_phi;
std::vector<double> _prop_train;
std::vector<double> _prop_test;
std::vector<double> _prop_train_no_bias;
std::vector<double> _prop_test_no_bias;
std::vector<int> _task_sizes_train;
std::vector<int> _task_sizes_test;
};
TEST_F(RMSEGPUTest, NoFixIntercept)
{
DescriptorMatrix descriptorMatrix;
PropertiesVector properties(_prop_train);
RMSEGPU loss(descriptorMatrix.getDeviceDescriptorMatrix(),
properties.getDevicePropertiesVector(),
_task_sizes_train,
false,
2);
EXPECT_LT(loss({{0, 1}})(0), 1e-5);
}
TEST_F(RMSEGPUTest, FixIntercept)
{
DescriptorMatrix descriptorMatrix;
PropertiesVector properties(_prop_train);
RMSEGPU loss(descriptorMatrix.getDeviceDescriptorMatrix(),
properties.getDevicePropertiesVector(),
_task_sizes_train,
true,
2);
EXPECT_LT(loss({{0, 1}})(0), 1e-5);
}
} // namespace
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment