Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
analytics-toolkit-tutorials
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
nomad-lab
analytics-toolkit-tutorials
Commits
e50370af
Commit
e50370af
authored
8 years ago
by
Ankit Kariryaa
Browse files
Options
Downloads
Patches
Plain Diff
Add the latest query example tutorial
parent
12318cb9
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
query_example_v1_1.bkr
+78
-30
78 additions, 30 deletions
query_example_v1_1.bkr
with
78 additions
and
30 deletions
query_example_v1.bkr
→
query_example_v1
_1
.bkr
+
78
−
30
View file @
e50370af
...
...
@@ -18,12 +18,35 @@
"mode": "javascript",
"background": "#FFE0F0"
}
},
"languageVersion": "ES2015"
},
{
"name": "IPython",
"plugin": "IPython",
"setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n",
"view": {
"cm": {
"mode": "python"
}
}
}
],
"cells": [
{
"id": "sectionVN8BXw",
"id": "markdownT9rKmh",
"type": "markdown",
"body": [
"Warning: running the first cell of this notebook can take a long time(hours).",
"",
"One can run safely the second and third cell, that will analyze a precomputed result of the first cell (queryMgO.out).",
"",
"A more documented version of this notebook will be uploaded soon."
],
"evaluatorReader": false
},
{
"id": "sectionQ3dZWh",
"type": "section",
"title": "Query Example",
"level": 1,
...
...
@@ -31,7 +54,19 @@
"collapsed": false
},
{
"id": "sectionWfNm4q",
"id": "markdownKIKNEj",
"type": "markdown",
"body": [
"*Warning*: running the first cell of this notebook can take a long time(hours), we are working to integrate the (much faster) flink query.",
"",
"One can run safely the second and third cell, that will analyze a precomputed result of the first cell (queryMgO.out).",
"",
"A more documented version of this notebook will be uploaded soon."
],
"evaluatorReader": false
},
{
"id": "sectionzKgCDS",
"type": "section",
"title": "Scan the whole NOMAD Archive",
"level": 2,
...
...
@@ -39,20 +74,14 @@
"collapsed": false
},
{
"id": "markdownwxOAJP",
"type": "markdown",
"body": [
"Try to filter whole archives based on the summary data.",
"Extract not just the data you want to plot but also its identifiers (provenance)"
],
"evaluatorReader": false
},
{
"id": "codesNXl6E",
"id": "codecJWYiO",
"type": "code",
"evaluator": "IPython",
"input": {
"body": [
"from nomad_structure_tools import query",
"percentageOfArchives = 5",
"",
"def hasMgO(stats):",
" els = set(stats.get(\"elements\",{}).keys())",
" return stats and \"Mg\" in els and \"O\" in els and ((stats.get(\"nEigenvalues\", 0) > 0) or stats.get(\"nBands\", 0) > 0)",
...
...
@@ -93,7 +122,7 @@
" else:",
" return None",
"",
"def methodToFile(outPath, archiveGroupIndexRange = query.archiveSplit(0
,
1), calculationGroupIndexRange = query.calculationSplit(0,1)):",
"def methodToFile(outPath, archiveGroupIndexRange = query.archiveSplit(
percentageOfArchives,1
01), calculationGroupIndexRange = query.calculationSplit(0,1)):",
" \"\"\"perform query, stores result to file\"\"\"",
" with open(outPath, \"w\", encoding=\"utf-8\") as outF:",
" nomadArch.queryCalcs(",
...
...
@@ -114,10 +143,10 @@
"state": {}
},
"evaluatorReader": true,
"lineCount": 5
5
"lineCount": 5
8
},
{
"id": "section
pPYVt5
",
"id": "section
LNKIwc
",
"type": "section",
"title": "Put data in a table",
"level": 2,
...
...
@@ -125,7 +154,7 @@
"collapsed": false
},
{
"id": "markdown
NWHQtR
",
"id": "markdown
qcviza
",
"type": "markdown",
"body": [
"Organize results in a table, convert units (from SI)"
...
...
@@ -133,13 +162,12 @@
"evaluatorReader": false
},
{
"id": "code
ih6a8T
",
"id": "code
CSQ8CP
",
"type": "code",
"evaluator": "IPython",
"input": {
"body": [
"import json",
"from ipywidgets import *",
"import pandas as pd",
"#from nomadcore.unit_conversion.unit_conversion import convert_unit_function",
"def convert_unit_function(sourceUnits, targetUnits):",
...
...
@@ -177,7 +205,7 @@
"datatablestate": {
"pagination": {
"use": true,
"rowsToDisplay": 5
0
,
"rowsToDisplay":
2
5,
"fixLeft": 0,
"fixRight": 0
},
...
...
@@ -187,6 +215,12 @@
"singleConfCalcGIndex",
"volumePerAtom"
],
"actualtype": [
0,
"4.4",
2,
"4.4"
],
"actualalign": [
"L",
"R",
...
...
@@ -205,7 +239,14 @@
true,
true,
true
]
],
"barsOnColumn": {},
"heatmapOnColumn": {},
"tableFilter": "",
"showFilter": false,
"columnSearchActive": false,
"columnFilter": [],
"columnWidth": []
}
},
"result": {
...
...
@@ -1491,15 +1532,15 @@
},
"selectedType": "Table",
"pluginName": "IPython",
"shellId": "
0CC47EED5B9E4D0B85D5B99C9E4DB0E
4",
"elapsedTime": 3
53
,
"shellId": "
DD17159096204C748D91BB5FF801966
4",
"elapsedTime": 3
46
,
"height": 776
},
"evaluatorReader": true,
"lineCount": 3
2
"lineCount": 3
1
},
{
"id": "section
FZY0gl
",
"id": "section
bRaG6F
",
"type": "section",
"title": "Plot results",
"level": 2,
...
...
@@ -1507,7 +1548,7 @@
"collapsed": false
},
{
"id": "code
McJ2gC
",
"id": "code
gThSLq
",
"type": "code",
"evaluator": "IPython",
"input": {
...
...
@@ -1525,19 +1566,26 @@
"value": "/usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n if self._edgecolors == 'face':\n"
}
],
"payload": "<div class=\"output_subarea output_png\"><img src=\" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8U9X7wPFPmq6kkw5aWkaBMmXvIVoEHCAKqKAoqKgI CogLBZGhoqLg1wEqoCAulPUTZciSAgKCIBtEpqwCld2mI22e3x8JtUiBjrRp0+f9evEiuTn3nufe Jk9Ozj33HlBKKaWUUkoppZRSSimllFJKKaWUUkoppZQqclOBk8D2HF57HrABIUUakVJKqSweuSw3 Dbg9h+UVgA7A306LSCmlVKGK4cqW+SygHnAQbZkrpZTL5LZlnpO7gaPANifFopRSKp8887meGRiG vYvlEkPBw1FKKZUf+U3mVbF3u2x1PC8PbAKaAacuK1i1quzfvz+/8SmlVGm1H4jNbeH8drNsByKA yo5/R4FG/CeRA+zfvx8RKVb/Ro4c6fIYNCb3iktj0pic/Q97oznXcpvMZwBrgerAEeDR/7wuealU KaWUc+W2m+WB67xepaCBKKWUyr+CjGYpseLi4lwdwhU0ptwrjnFpTLmjMRWeohiBIo7+H6WUUrlk MBggDzm6VLbMlVLK3WgyV0opN6DJXCml3IAmc6WUcgOazJVSyg1oMldKKTegyVwppdyAJnPldCLC 9u3bWb9+PSkpKa4OR6lSIb93TVQqR1arlTvv7M6vv27GaAwmKCiFNWuWUrFiRVeHppRb05a5cqpP PvmU1auTsVj+4uLFLSQkPMRjjz3j6rCUcnuazJVTbdu2h5SUToA3AJmZXdi9e49rg1KqFNBkrpyq UaMbMJvnAimA4On5LfXr13F1WEq5Pb3RlnKqzMxMund/mEWLlmI0BhIRYWb16p8pV66cq0NTqkTJ 6422NJkrpxMRDh06REpKCtWqVcPLy8vVISlV4mgyV0opN6C3wFUlxsWLFzl58iT6Za9UwWkyV0VO RHjuuaGEhkYSE3MD9eu34tSpK+YCV0rlQW6T+VTgJLA927J3gd3AVmAuEOTc0JS7mj17NpMnL8Bq PUxqaiK7d7eid++nXB2WUiVabpP5NOD2/yxbAtwA1Af+AoY6MS7lxtat+53k5PuBUMBARsZTbNq0 0dVhKVWi5TaZrwbO/mfZUsDmeLweKO+soJR7i42NwWRaCWQAYDCsoEKFSq4NSqkSLi+jWWKAn4C6 Obz2EzAD+DaH13Q0i7pMeno67dp1ZsuW43h4ROHhsZ1VqxZTt25Oby2lSqfCHJoYQ87J/BWgEXDP VdbTZK6ukJmZya+//kpSUhItWrQgNDTU1SEpVazkNZkX9K6JjwAdgXbXKjRq1Kisx3FxccTFxRWw WlXSGY1Gbr75ZleHoVSxER8fT3x8fL7XL0jL/HZgPHAz8M811tOWuVJK5VFhdbPMwJ60w7APURyJ ffSKN3DGUWYdkNP4Mk3mSimVR3o5v1JKuQG9nF8ppUohTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5 AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG8htMp+KfSLn7dmWhQBLgb+AJUCwc0NTSimV W7lN5tOA2/+z7GXsybw6sNzxXCmllAvkeuZnIAb4CajreP4ncDP2FnskEA/UzGE9EZH8R6iUUqWQ wWCAPOTogvSZR2BP5Dj+jyjAtlQpMHPmTPz8ojAaw6hYsTZHjx51dUhKuQ1PJ21HHP9yNGrUqKzH cXFxxMXFOalaVVJs27aNHj0eBV4FWnLkyLvUqdOKc+cOuzo0pYqF+Ph44uPj871+QbtZ4oATQDlg BdrNoq5i4MCBTJjwJ/bTLACpQACJiQmEhYW5MDKliqei7Gb5EXjY8fhh4IcCbEu5uYCAACAp25IU QDCbzS6KSCn3ktusPwP7yc4w7P3jI4B5wEygInAI6A6cy2FdbZkrzp07R0REVdLTuwJtgPdo1iyE 9etXXFbu999/5+jRozRo0IDKlSu7JFalioO8tszz0s2SX5rMFQAJCQk89FAfjh5NpF27lkyY8AEe Hv/+OOzXbzBfffUDnp71yMhYx9dfT6Fr1y4ujFgp19FkrkqM9evX8+67H5OebiUurgkjRkwkOXkz EAhswmxuz8WLpy9L+EqVFprMVYmwYcMG2rbthMUyAjDh5fUinp5tSUmZm1XGyyuAU6eOEBysFxer 0ievydxZQxOVypP335+MxTIMGAiA1ZpMZuZIYBdQG5hOeHgkQUFBLoxSqZJDk7lyiYyMTMA725Iq VKxYnoSEFhgMPgQHB7J48bxLrROl1HVoN4tyiZUrV3LHHd1JSXkPMGM2P8fkyWO49957OHv2LGXL ltW+clWqaZ+5KjGWLFnCG298iNWawcCBD9Oz5wOuDkmpYkOTuVJKuYGivAJUKaVUMaHJXCml3IAm c6WUcgOazLOxWCz07/8sNWs2p0OHrvz111+uDkkppXJFT4Bm06nTffzyC6SmPovBsJ7g4HHs2bOF 8PBwV4emlCpldDRLPqWkpBAQUIbMzPOADwD+/l347LMH6NGjh2uDU0qVOjqaJZ+MRiP2Y5fsWCLA Bby9va++klJKFROazB28vb3p128AZvNtwGd4ez9B2bL/cNttt7k6NFVMHDx4kKVLl3Lo0CFXh6LU FbSbJRsRYcqUz1m2bA0xMVEMG/ai3rFPAfDJJ1N4/vlheHvXJT19Ox98MJYnnujj6rCUG9M+c6Wc LCEhgSpVbiA19XegKrAXX9/m/P33n5QtW9bV4Sk3pX3myu19/fXXBAaWx9s7hNatO2CxWAq1vsOH D+PtXQV7Igeohrd3RY4cOVKo9SqVF5rMVYmyYsUKevXqz8WLU7BaN7J2rQ8tW7Yv1DpjY2PJyDgE rHcsWUtm5lGqVKlSqPUqlRfOSOZDgZ3AduBbLo3rU6oQvP/++8AjwB1AFeBztm3bXKh1hoaG8t13 X2A2d8Tfvwp+fncxa9ZXlClTplDrVSovCjo5RQzwBFALSAO+B+4Hphdwu0rlyNPTEziUbclhimKO lc6d7+TUqcMcP36c6OhozGZzodepVF4UtGV+AbACZuyfKDNwrKBBKffz/vvvU6VKPWrUaMgPP/yQ 7+28+uqrGAzxQA9gFHAH7dq1ybHsH3/8wZgxY/jwww85d+5cvuu8xM/Pj2rVqmkiV26rL3AROAV8 lcProkq3kSNHCgQKjBcYKWCSmjVryWOPPSapqal53l58fLxUqVJLwsIqSK9ej4rVar2izIIFC8Rk Chej8UXx9b1fKlSoIWfOnHHG7ihVJLBfuZhrBR2aWBX4CWgDnAdmAbOBb7In85EjR2Y9iYuLIy4u roDVqpLEz688Fsv7wL2OJa8BCwArYWHnOHFiL0aj0al1Vq3agAMHxgL2i768vXvzxht1efHFF6+5 3tixY/ntt99o2LAhw4cP16nrVJGJj48nPj4+6/no0aOhCMeZ9wA6AI87nvcCWgBPZyvj+JJRpZWv bxRpaV8B7RxLJgBbHf9X4bPPXuOxxx5zap1hYZU4fXo5EAuAwTCaIUPSefvtMVddp2nTm9m48QDQ GVhE7dpl2blz/VXLK1WYinqc+Z/Yk7fJUWl7YFcBt6nczN13t8XeG7cS+w+5N7G3A3yAaE6dOgWA zWbj0KFDHDt2jII2ADp37oSv7/PAUWAdJtNkOna8+q0ZNm3axMaNG4EtwMfAVnbt2sOSJUsKFIdS RaWgyXwr8CWwEdjmWDa5gNtUbmbGjK/o3r0F3t73A72Bm4A6wHQMhl306NGD8+fP06xZW2rXbkVs bH26dOlJRkZGvuv8+OPx3HtvBAEBjYmI6MWUKeO46aabrlr+4MGDQBgQ6lgSCETpfViUysbFpxFU cbJhwwYJCCgvYBIfn7Iya9YsERHp1auv+Pg8LpApYBGzuYOMHTvOqXWfO3dOEhMTxWazXfHa6dOn xWDwF5gkkCzwlRgMfnL48GGnxqBUbpHHE6B6dkcVqaZNm3LhwhFELKSmnuTee+0nRX//fStpaY9g f0uasFge4LfftjqlzszMTB588HHCw6OJjo6lbds7SUpKuqxMSEgIc+d+hZfXMCAQo3EQX389mQoV KjglBqUKmyZzVSzUqFEVT89Fjmc2fH0Xc8MNVa+5Tm598MEEfvhhL1brCdLTE1mzxp+oqJrUrNmc b7+dkVWuS5cupKf/g81mJSPjDD179nRK/UoVBb1roioWjh8/TsuW7Th3LgCbLZnq1UNZvfpnp1yg 06XLQ8yb1wF42LFkNTAQeBezuQ8zZ35Kp06dClyPUs6U19EshX8dtFK5EBUVxe7d9hEl3t7eNGnS xHHpfsFVr14JH58VpKX1xv7ZWI79DhQdsFheZerUmZrMVYmnLXPl9i5cuEDz5rdw7JgHFouBzMwj wG9ARQyGN+nV6zDTp3/q6jCVuoxOTqFUDtLS0li1ahWbNm3itdfGkZLyPAZDMn5+k1m/Pp7atWu7 OkSlLqPJXJUa6enpeHl5XXrT59qGDRuYPn0GXl6e9O//ODVq1CikCJXKP51pSLm948eP07BhG0wm P/z9Q/n662/ztH6zZs2YOPF/vP/+u7lO5OPHf0BgYAQmUxC9ez9Jenp6fkJXqtBoMlclzl139WT7 9pux2VKxWOLp2/c5tmzZUmj1zZ07lxEjJnDx4kpSU/cye/YRXnhheKHVp1R+aDJXJYrNZmPz5l/J zBwBGIF6wN2sWbOm0Or88celWCzPADWBsqSkvMb8+UsLrT6l8kOTuSpRPDw8CAwsC/zhWJKB0biF cuXKcfbsWV59dRR9+jzFrFmznFZnREQIXl7Z7x+3i/Dw0KuWV8oV9ASoKnHmzZtHz55PYDB0xGDY SbNm5Zgz50saNGhFQkJL0tMbYDZ/zNChjzB8+EsFri8xMZH69Vty7lwjMjND8fKazfLl82nevLkT 9kapnOloFlUq7N69m7Vr1xIeHk6nTp345ptveOqpmSQnz3eU+Btf37pYLOfzPNolJ2fPnmXmzJmk pqbSqVMnYmNjC7xNpa5FrwBVpUKtWrWoVatW1vPU1FRstuxdH6FkZKQjIk5J5mXKlOHJJ58s8HaU KizaZ14MiQiZmZmuDqNEue222zAaFwHTgM34+vamc+d7ddo3VWroO70YERFeeulVfH398fX144EH +uh45lyqVKkS8fGLaNbsGypVepjevSvwzTdTXB2WUkVG+8yLkc8+m8rgwR+RnLwQ8MNkeoD+/esz fvybrg5NKVXE9ArQEmzhwniSkwcC5YBAUlJeZtGiFa4OSylVAmgyL0YqVIjAy2tz1nODYTNRUREu jEgpVVI4o5slGPgMuAH7nHV9sN9f9BLtZsmlxMREGjRoxfnztRDxx9PzF9at+0Xv6KdUKeSKcebT gZXAVOxDHf2A89le12SeB+fPn+fHH38kPT2dO+64g6ioKFeHpJRygaJO5kHAZqDKNcpoMldKqTwq 6hOglYFE7IN7/wCmAAWftFEpVST++ecf+vUbTPv23Xj99bfJyMhwdUgqnwp6Bagn0AgYAPwOvA+8 DIzIXmjUqFFZj+Pi4oiLiytgtao4mzRpEoMHjyQ93UqVKhX57bdlhIZeeWMqEeHdd9/ljz/+oHXr 1gwcODDfddpsNhITEwkODsbHx6cg4ZcoycnJHDlyhOjoaAICAvK0rsVioVmzOI4ejcNqfYB16yaz Y8effP/9F4UTrLqm+Ph44uPjXVZ/JHAw2/Mbgfn/KSOqaH377bfy4IO9ZOTIkZKSklKkdS9btkzA LPCJwBqBtmI0lhEfH39p2LCN7N+/P6ts3botBCoI9BGIlBtv7JCvOnfv3i3ly1cXX99Q8fHxlylT pl5R5siRIzJhwgT5+OOP5cSJE/nev6KyevVqadv2LmnWrINMnvyZJCQkyKuvjpSnn35Wli1bJiIi ixcvFn//MPH3jxWTKVi+/36WrF+/Xl5//XWZMGGCXLx48Zp1LFiwQAICbhSwCYhAknh6muT8+fNF sYvqOrAPKClSq4DqjsejgLH/ed3Vx6RU6dOnryOZ1hMIlMjIWElPTy+y+u+77z6BBx3JQQROC3gJ nBYPj3elQoUasnXrVvnf//4nECRwzlHupIBJtm3bluc6K1euIwbDx47t/Clmc6Rs3bo16/Xdu3dL YGCE+Po+KibTQxISEi2HDh1y5m471caNG8VsDhOYKvCjmEw1xN8/VDw9+wuMFbO5vEyaNEX8/cME Vjr2e7N4eweLr2+YeHgMEZOpq8TG1pc9e/bIunXr5J9//rminh9//FECAtpm+1uliJeXn5w9e9YF e63+Cxck8/rYu1i2AnOxnxTVZO4CaWlpAr4Ci7MlyLIyfvz4IouhT58+Ah2zJYgDAj6O1l+6GAyB YjAECngI+AkszVa2vPzf//2fiIgkJSXJL7/8IqtXr77ml5HFYhGj0Ttb61LE37+XTJ36b+u8U6ce YjCMy3rdw2OE9OrVt9CPRX499dRggTeyHZdVAuUve+7vHyJeXmUFPhBIFxAxGOoJfJRVztOzgXh5 BUlQUBPx8wuVhQsXXlbPhQsXJCoqVjw9hwn8LCbT3dKx4735innjxo0yadIkWbRokdhsNmcchlxL Tk6WtWvXyrZt24q87sLkimR+Pa4+JiXWli1bpEmTthIVVUPuv7/PdX/+Hj9+XMA724deBO6W/v37 F1HEIseOHROjMVCgn8AkgRiBLo5YRjpa45MdyXe5QBmBQwJTxWDwkzNnzsixY8ekfPnqEhjYQvz9 60qDBq0lKSkpx/psNpsEBIQJrM3qKvDzq5nVFSEi0rRpe4GF2Y7Jd9Khwz1FdUjybNCg5wVGZIt3 meM4Xnp+j0Ajgf8JtBfoLLDf8eW4wVFmj0Cw49iKwBrx8wu9otvt2LFj0r37I9K48S3y7LMv56tb 7tNPp4jZXE7M5j7i719H7r//0asm1Tlz5kjv3k/Kiy8OlZMnT+br+GS3f/9+iYysIoGBjcVsriid Ot0nVqv1inJ79uyRevVai69voNSq1VS2b99e4LoLG5rM3cPx48fFbA51JL4d4uXVW9q2vfOa69hs NvH0DBT4wfEBPipQRhYtWiQiIp999pnUqNFIatduInPnznVKnIcOHZJt27ZJampq1rIDBw5IXFwH qV27iVSvXkfM5sbi6fmCGI2hAhH/+bJpLoAYjcEya9YsERG5++6e4un5iuP1TPH1fUCGDh1x1Rjm z58vZnOYBAbeJX5+VaV37ycvSyZvvDFWzObWjuNxSMzmhjJx4qdO2f/CsGPHDvHzCxMYJ/CF+PpW EC+vAMff9WeBQIFkx/FJFygnPj7BUq9eC/HxuV/gmMBbAi0vO9Zmc7QcPHjQqbGmpqaKt7efwF5H PRbx84uVNWvWXFH2jTfeFg+PcAF/gTAJDo6Q06dPF6j+1q1vEw+Pdx11p4rZfLNMmjTpihgjI6uI wfCh2Lv9PpeQkPJy4cKFAtVd2NBk7h4GDRokcFu2D2O6GI0+YrFYrrne4sWLHQm9ohgMZnnqqWdE RBx91AECHwq8I2CW7777Lt/x2Ww2ue++XmI0BoqnZ6QEB0dednLzkszMTJk5c6a89dZb8uijfcTe 5XLQsU8XxGiMkPXr12dtc8GCBVK2bHWB1dn2fZrcffeD14zn4MGDMmfOHFm7du0VrcKMjAwZOPAF MZmCxc8vRIYOHVnsf45v2bJFund/RDp27CFz5syVJUuWSO3aLaRs2Sri5RUt2buVzOb6Mnv2bLl4 8aLcc08v8fcPl/DwSuLtHeJosYvASvH3D7vsS9cZTp48Kd7ewWI/TxIr0E78/OJkzpw5V5T19Cwj 0FvglNi7joJl6NChV5SzWq3ywguvSHR0TYmNbZTV9ZaT8PDKAn9le6+8LQMHPndZme3bt0tAQI3L vtiCgprm+IVTnKDJ3D1ER1dztKwufWgTxMPDW/78809ZtmzZNZN6UlKSbN269bJRG4GBMQLfZHtD /08qVqyT7/g++eQTRwvrJbF3p1SUihVrXHMdq9UqtWo1dnStdBeDoYL07Nkn6/X+/Z8VP79a4uHR UKCnQIaARczm9jJ27Lh8x+pOrFarVKvWQDw9hwhsF6NxjERFxUpycvIVZSdOnCS+vsESGFhP/P3D ZMmSJU6PJzMzU7y8QgX6CuwW+FjALJs3b76irL0L8HS29+DT0rlz5yvKvfjicDGb2whsEfhZzOZI Wb16dY71t23bWYzGkY7PyUXx82sh06ZNu6zM0aNHxdc3ROCso96LYjZHya5du5xyDAoLmszdQ6VK dQXqCHQXGC9Q3fHT21ugjHh4BObpw2k2VxCYl+2DNEUiI6+dfK+lXbt2Yh9SeGl7m8RgCLjuejab TebMmSMjR4687GTZ3r17xWQqK/bRLecF2ggEird3GenSpWeO/aDZtzlx4qdSpUpDqVq1oUyaNCXf +1USJCQkSMeO90l0dE255Za7rjky5+TJk7Jp0yY5d+5cocTyzz//OLqAMrL9UmgvP/zwwxVlvbyC BdY5ytkEbpLXXnvtinLR0TUdifzSe2uMDBr0fI71HzlyRGJibhB//1jx9Q2Tnj0fk8zMzCvKPf30 8+Lnd4MYjUPEz6+h9OrVt9j/OkOTuXt46613xWyu62jxdBKDwUugrKM/VATGi7d3eK6399BDjwhE if1E4P8JlJHhw4fnOz77EMRB2T5wf4nRGJTv7a1bt04CAxtn255N/Pyqy9KlS6+77rRp08Vsrub4 6b5SzOaq8vXX3+Y7FpV7SUn2senwj1w6xxEQ0CjHv1tAQLhAuMBzAh3FYCgrn3565bmLatUaCyzK ei8YjQNk+PCrnzNJT0+XnTt3yt9//33VMjabTebNmydjxoyR2bNnF/tELqLJ3G3YbDZ55533pFat FtKoUZzYh/L1z5bskgWMedpe9+49xcsrQry9I+XppwcWKL4dO3aI0RggME3sY50byqOPPpnv7V24 cEHKlIkW+Mqxb59LWFjF654jEBFp0+ZOgVnZjs0Madeua75jUXkzePBL4udXX2Cc+PreJU2a3Jzj cFIfnwCxj8x5W2CKeHoOkHffffeKcvPmzROTKULgDfH0HCChoeXl2LFjRbErxQqazN3P9u3bHd0r 1QUsjoT1f2IwBLo0rrVr10rDhjdLTEwDGTZspGRkZBRoe5s3b5YqVeqJ0egt1ao1zPXwsY4duzv6 ai8l8w/k7rt7Zr1utVpl4MAXJCionISHx8iECZ8UKE51OZvNJt9884307/+MjBs3/qrDG2+7rZt4 ez/u6EpbJyZThGzcuDHHsr/++qsMHvyCvPrqyFKZyEU0mbulkydPiv0qympiH9rXQsAkvXr1cnVo xcL69esdV0yOEhghfn5hsmnTpqzXhw0bJWbzTWIf2fGHmM2VrzlCIjfOnDlTaP3Q7urMmTNy661d xdvbT0JDK8j33890dUjFGprM3dPNN3cQ+0UhVQR8JDi4nNOHmV3PokWL5JFHHpVhw4Zd974fRW3r 1q0yaNDz8swzL1zRoq9WrYnY7xNzqeX+sfTs+fg1t7ds2TK58cY4adnyJpk3b17WcovFIrff3k28 vPzFy8tPund/+JonZ5XKLzSZu6eMjAwZOfI1ad26vTz+eL8ibxWOHv2a48ukgUCoBAZGXfWqzOKm WbP2jr74SyfUnpdBg164avkff/xRwCTwstivxDTL9OnTRcTeP2wydRNIE0gSs7mdjBkztqh2RZUi aDJXhcHDI0j+Had+UaC6DBxYsJOoRWXNmjViNoeJ0ficeHv3kdDQ8nL06NGrlq9Y8QaxX1j17zDO kJAqIiLSqFFbgSWXnWy99dbie2sAVXKRx2SuEzqrXLHZkoHOjmf+wK0cOnTIdQHlQatWrdi4cRWj R4fy5pu12blzI9HR0Vctb7GkY7+78yWRpKVZAahatSKenvGO5YK390piYysWVuhK5Zoz5gC9HseX jCrJAgKiSUoaBjwNnAYa8Omnw3nyySddHJnzPf30QD7+eDbwPeAN9OTee5sza9YMjh07RrNmcVy8 WB5IJzz8Ir//Hk9ISIhrg1ZuxxUTOl+PJnMXsVqt3H773axZswVvby/GjXuFvn375mtbf/zxB61a 3Upamg9wjnvuuZvZs791bsDFhIjQvXtP5s5dAgi33NKSxYt/wsPD/kP24sWLrFy5EqPRSFxcHCaT ybUBK7ekyVxlad48jg0bzgL/Aw4BA5k3bwZ33XVXvraXlpbG/v37CQkJITIy8vorlDJJSUl89dVX 2Gw2evXqRWBgoKtDUiWYJvNSatq0afTt+yIZGcn4+4fyyy//R/Pm7RBZD9RylHqeuLjNrFjxiytD dUuHDh2iRo3GpKdHAh54eR1jx47fqF69+nXXVSoneU3megLUDezYsYM+fQaQkTEB+JukpN60bn07 9u9QS7aSSfj4eBeormXLltGz5+M89tjT7Nq1i6SkJFJTUwu0TXfQuXMP0tPvAXYA27BaH6JTpx45 lrXZbJw/fx5t5Chn0mTuBmbMmAE0Bu7HPtJkGFZrOrfe2ga4C/gcGA58zeuvv57ven744Qfuuqs3 M2Y0ZOrUUG64oQUBAcGYTAE0aXIjNpvNCXtTMh09mgjcjr0hZQBuJyHhzBXlFi5cSFBQWcLDo4mO rsbWrVuLOFLlrjSZuwF7//XfwCNAKBAO2Pj880m88EJPoqPfo1atn1m9ejFNmzbNdz0jR75HSsok 7CNaLMCNwHngMJs2naJPn8cLuislVo0aFYFPgTQgHfiU2NjLhz8eO3aM++57mKSkH7Fak0hIGEWH DndhtVoLJaZ9+/bRq1dfOnbswfTpX2X9EsjMzCyU+pR7MAKbgZ9yeM1FQ+5LD6vVKiZTmMCNAkkC FvHwaCcvv3z124bmR82azQVWOC6WaSL/3ptaBCZJhQo3OLW+kuTMmTNSpkxFAbOAnwQGRsupU6cu K7NgwQLE4WkEAAAgAElEQVQJCro12zGzT+V2rfuR59fhw4clKChCPDxeE/hazOZaMmTIUKlZs4kY DB4SGlq+UCarUM6Diy4aegbYldfKlXN4enrStGkL4FnADzBhsz3HihW/ObWefv0ewmweACwHbMB4 x7+9wAYiI8s4tb6SpEyZMpw+fYh165azZs0Szpz5m/Dw8MvKREdHY7Xuwv5rBmAfmZkXCAsLc3o8 M2bMwGLpis32KvAgFst3jBs3kT17eiKSxunTX9K1a08OHz7s9LqVazgjmZcHOgKfUTSjY1QOqlWr hJfXr1nPPT1/pXLl8k6tY9Cgp3n77aeoUWMoRuNe7Al9D9AIg+E72rZtxbFjx5xaZ0liMBho0aIF rVq1wmg0XvF6/fr1efTRHvj5NcLf/wHM5jZ88MF7+Pn5OT2WjIxMRHyyLfHBZrMh8izgCbTFaGzJ xo0bnV63cg1nJN9ZwJtAIPAC/17zfYnjF4MqTKdOnaJJk5s4dy4a8MDf/yAbN64iKirK6XU9++wQ JkywkpHxP8eSL7D/6StgMOxj5cqFtGnTxun1uos1a9Zw8OBB6tevT926dQuljn379tGwYSuSkkYB VTCZXiE1dTci24GqQCp+fvX4+eep3HjjjYUSgyqYvA5N9CxgfXcCp7D3l8ddrdCoUaOyHsfFxREX d9WiKp/Kli3Lrl0bWb58OSLCLbfcUmgXrZw6dZaMjEbZltQAKgO/IzKGu+/uzZkzBwtUR2JiIoMG vcyuXXtp0qQe7703hqCgoAJts7ho3bo1rVu3LtQ6YmNjWb16CUOGvMa2bdtJTDyMweCBwdAEb++7 MBq3cMcdLQs9DpV78fHxxMfHu6z+N4EjwEEgAUgGvvxPGRefRlDONnPmLMecmzsEjgrcJDBcLk3s bDSGFmj7qampUrVqPfHyGizwi/j4PCqNG9+U40S96tpmzJjhmEv2lIBVvLwelYYNW8v8+fMvmwcz MzNTHnvsSQkNrSQVK1aX+fPnuzBqJeLaW+DejI5mKTXGjXtfgoPLidHoLxAtcEYgU6CvREfXKtC2 165dKwEB9cU+g7t9kmCzubzs3bvXSdGXHk8+OUhgfLYRNDskKqrGFeXuuusegVDH/Jz9BMyyatUq F0SsLsHFt8DVzvESxmazMXz4a0REVKVixRv44ov//rDK2fPPP8PZs8dJTT1L5cohQDRQBoPhO0aP fv6KKxx3797NuHHj+Pjjjzl79uw1t200GhFJ49+3UwYi1hxPKqprq1KlPL6+a7h0LA2GNZQvf+WJ 8fnzlwM/AC8BnwD3MXr0awDMmTOHGjWaUqlSXUaNGlOqLw4r7Vz9BaeuYejQEQJlBIwCRjEYAuWn n37K0zb69u0vECDQUqCO2Ceftm9v9OjRsnLlSjGbw8TTc4D4+HSTcuWqSmJi4lW3Z7VapVGjNuLr +4DA12Iy3SkdOtx9WbeAyp3k5GSpV6+l+Ps3l4CAzhIUFCnbtm27opzBECjwV7YW/MsSF3eLLF++ XMzmcgKLBTaK2dxUXnvtLRfsSelDHhvHeqOtUs7HJ5z09JbATOAicDOVK9s4cODPXG/D0zOYzEwr 0AhYD5iA3sA24A8qV67MwYP3AJOAc4Avjz12D599NuWq20xOTmb06LfYsWMvzZvX4+WXX8DHx+eq 5dPT0xGRa5YpKBHh5MmThIWF4elZ0LEDRSc9PZ1ly5ZhsVho06YNERERV5S56abbWL36IvZW+d/A gyxY8D1z5ixg6tSqwHOOkr9RterT7Nu3qeh2oJTK62iWouDarzd1TRAisFZgn8AWgQni5xclzz33 gvj7V5KAgEoycuTI62wjWOAjgUOOKyDXO1p3NoHW4ulpcvTHLnYsnyve3sGSnJxc4PjT09Oldu3G Ap4CnhIbW19SUlIKvN3/WrRokXh6lhEwCJjkpZdednodhcVms8lXX30t3br1kgEDnpOEhIQryqSn p0unTt3EZIqU4OBKMm3aNBEReeaZF8TD46VsLfYfpF69G4t4D0onimG3tauPiboGP78ogRscCbmi QLCUKVNWIExgtsB3AkHyxhtvXHUbECSwXeCCI6leyPbh7yvBwaGO7pd/L2M3marl+HNfxJ58hgx5 SSpXri/ly1eTRo2aS8+evXLsmunY8W6xTzJ9UiBRoJnExd3utOMjYh/pYTQGCbwrkCGwWsBPli9f 7tR6CsuQIcPEw6OKwGSBpyUgIEL++ecfSU5OlgEDXpCGDeOke/dH5Pjx41ese+DAAQkKihQPj+cF 3hSTqawsWLDABXtR+qDJXOVFjx49BOoKJDsS7euOxP59tuT7uYSHV7/qNqKjawr0cSS6co7HZwV+ FQiQiRMnitEY7BgeJwJHxccnSE6ePCkHDhyQ119/Xd5//325cOGCiIh063a/QIzANIFhjtZ+efH1 DZezZ89eVndwcBXHl86lWOeLv39Fpx6jvXv3CvhmG10jArfL4MGDnVpPYfHw8HP88roUe2d56aWX pF27zuLre5/AEvH0fFnKl68uSUlJV6x/8OBBGTJkmAwY8JysXbvWBXtQOpHHZF5yOv5UoThw4DD2 W+eaHUt6AmOx3/nvkjQ8PK7edbd69ULq1m1NcrI/9i6+H4GvAR+Cgnx4+OGHOXo0kQ8/bIrB0Bqb bSUjRoxg+/btdOjQDRF/IJlhw97i7793MHfuPMAKPAE0wX4b31RSU3fTtWtXKleujNlsJi4ujjJl /Dh3bhNwjyOaPwgKcu7l8fbJnzOx34OmOpAK7CQ29k6n1lNYbDYrEJBtSQjbt29n9eo1pKcnAl5k ZHTg/Plf+fXXX7ntttsuWz8mJoaxY8cUZciqmHL1F5y6hm7d7hFoLGBxtNreFqMxVCBQYJLABAE/ mThx4jW3k5mZKXPmzBHwEUjJagUGBLTJ+lm+bt06mT59umzcuFFERIKDKwk862jxWgRaSoUKMQK1 Ha34JIH2ApUFbhUoJwbDbQIvCISKl1eM3HzzbWIw+AvcKXC3GAx+snr1aqcfpyee6OfoTnpQoKrE xNQtMRcx+fqGCbR1dA99KuAnb731lnh7B2T7u9skIKBZvu6kOHz4q+LhESDgJeHhsYVyF8jSCO1m UXlx4sQJ8fYOdfSR1xDwl08++UTGjRsnkZE1pVy5mvLxxx9LZmamHDhwQA4dOpTjEMHJk6c4vgBM 2RKEiNncUhYuXJhj3fYvjc3Zfv5/JB4eoY7ulUvLVor9JG1vgVuydXWsF6gonp4VZPbs2dK3b195 4oknZPfu3YV2rP7v//5PnnjiCXn33XdL1DDJ+fPni6dnkBgMFcTDo5w0bnyjWK1W6dbtQTGbbxWY Id7efaVatQZ5Pnk8e/ZssQ9LXStwXuAJCQ2tUkh7UrqgyVzl1YkTJ+SZZwZL796PyC+//CIiIq+8 Mlw8PcPEYCgjNWs2krJlqzr60oMkJqaOWCyWrPWnTfvCkcSNAvcLdBSYK/CU+PuXzRq1kpaWJitW rJClS5dKUlKSREfXEhjhSM7pAm0lIKCs2K9AvJTMxzlaxEbx8Hg62/J/HF8ezWTMmDEuOW4lyd69 e+WLL76Qn376STIyMkTEPoLltdfekltvvVcGDHhezpw5k+ftdunSReDJbH8X+0nwa/ntt99kxIiR Mn78+CvOgah/oclcFdTnn38u4OdIyBvFPsrlXrGf4EwXuF1uv/2urPJVq9YR6CL2kSx7BEYLdBKI kmeeeUZERM6fPy+1azeVgIBGEhjYWsqXry6rVq1ydAHECkRITEwdWbFihaPuWwTuEjBL7doNZMOG DY6yywWOCfQUuFnAX/r16+eqQ1XqPf744wKtsv1i+k0MBr+rlp87d66YTBFiMAwTH5+eUqFCDU3o V4Emc1VQrVq1EXg5W2urlfw7RlwEZorZXD6rqyEmpoYjed8pECHwikCcmM0RWa3y558fKj4+D2d9 6D09h8k99/QSi8Uiq1evlj/++COrD/r333+XevUaSsWKVWTQoEFZLcmZM2cK+DuSvb9AdYEImTRp kmsOlJLTp0+Lj0+YQGuB/gKB0q/fU1ctX758Lfl3tioRH5+e8t577xVhxCUHOppFFVRQkD9wMtuS CGAu0AH7+2seFouFwYNfokWLxhw7loB9TtDzQHPgQ6Kigti9+y/MZvsomT//PEhaWicuXdCWkdGB v/56FZPJdMX9tJs0acLWrX9cEdd9991H377xTJ78PXAvsJrY2Egef7z0zj3qaiEhIRw79ieDBg3i 1Kl93Hffu/Tt2/eq5ZOSzgMxWc/T0ytz7tz5q5ZXxYurv+BUHu3evVs8PPwFnnb0WZdxtIZrCFR1 9GGvFqPRW3x9ywhsy3ZS0iTduz8o6enpl23zzTffEbO5vdjHs1vFx6enPPnkM/mKb968edK/f395 //33S8yIEmXXu/eTYjLdLfarhVeIyRQhv/32m6vDKpbQe7MoZ9i1axeDBj3LqVNn8PExc+rUWY4c OYFIT+z36YjAwyMIf//6XLiwPmu9wMA6rFr1DfXr179sexkZGfTo8Qjz5/+EweBJ06ZNWbRoNv7+ /kW7Y8qlUlJS6NfvWX788Sf8/YP48MMxdO3a1dVhFUt5vTeLJnN1VRcvXqRmzUacOnUPGRltsE/e nAx8iK/vezRvnsSGDb+RkrIO+8U02zCZ4jh6dB8hISE5bjMxMZHMzEwiIiIuvVmVUjnIazJ39v3M lRv55ZdfuHixEhkZbwOdgAUYDFuoUqUfDz0UwcKFs/jww3GYTC0JCmqBydSWqVM/JSQkhIkTJ2Iy RWI0lqFatQacOHECgPDwcCIjIzWRK+Vk2jJXV/Xjjz/y0EPvc/HiL44lyXh6hnP27KnLukeOHz/O wYMHqVq1KpGRkSxcuJA77+yFyFwgHHiM0NAETp7crxNMKJVL2jJXTnPLLbcQHHwcL6/ngLmYzV3p 1q37Ff3cUVFRtG7dmsjISACmTJmOyFDsMwnWBiZy+vRJQkIqU6ZMDCNGjHRKfDt37uSmmzoRG9uY fv2eJSUlxSnbVaok0qGJ6qr8/f3ZuHEVQ4eO5sCB6cTFxTFs2IvXXS84OAD7HN+X/A8wcuHC84CB 118fjsFgYPToUZetZ7PZ+P777zlw4AANGjSgU6dOV60jISGB1q3bc+HCcESacuzYWBIS+jBv3oz8 7KpSJZ52syinO3r0KJUr30BGRncgEpgAvA086SgxFV/f4SQnH8XDw/7jUES4555eLFmyl5SUtphM P/DUU/fxzjuv51jH9OnTefrphSQnf+9YkoLRGExKShJeXl6Fu4NKFYGi7mapAKwAdgI7gEEF3J5y A+XLl+evv7bQvv0RatdegK+vmX9vsQvgR2qqlbi429m4cSP9+w+mR4+H+Pnn1SQnr8Rme5vk5F/5 4IMPOH36dI51+Pj4YDCcy7bkAgaDR9aXQ3aZmZns3buXxMREp+6nUu4kEmjgeOwP7AFq/aeMywbd q+LhnXfeEfu0cf8nME8gXGC4gJeYTKECbwr0EvuMQf/ORuTnV1H279+f4zYvXrwolSvfIN7ejwl8 In5+9WXIkOFXlNu+fbv4+oaL/c6LvhIXd0eJuuOhKr1w8UVDPwAfAcuzLXPEpUqzdu3a88svW4Eg 4BFgKBCGvT/9EeAMEAu8D3TEw+Nzypf/gv37t1918uSzZ88ydux4Dh8+wW233UTv3r2uGPIYElKZ s2cfBkYCZ4GmjBrVm5EjnXMSVqnC4sqLhmKAlcANQFK25ZrMFdu2baN+/VbYk3h74GNgPvAF0NlR 6jX8/D7FZrNQu3YDZs/+gpiYmALVazD4AX8B0Y4lI7jxxpWsXLmCTz6ZxOrVG6lZM4YXX3wOPz/n zlCkVEG4Kpn7A/HAG9hb59lJ9lZQXFwccXFxTqpWlSQffPARzz77KmDEywsGDOjDp5/+hMUyGUjH bH6Mb775gC5dujitTm/vcKzWt4DHgTTgRh56qCYGg5k5c3ZisfTG13c5NWoc5fff4/XkqXKZ+Ph4 4uPjs56PHj0aimaQShYvYDEw+Cqvu7bjSRWazMxMGTJkuAQHR0lISAUZO3b8dfujLRaL/P3335Ke ni42m00mTPhEYmMbS40azWT69K+cHuNnn33muElYE4EoCQiIksOHD4uXl79jIgURyBR//wayYsUK p9f/X0lJSWK1Wgu9HlXyUcT3MzcAX2Lv+LwaVx8TVUjGjHlHfHxqCrwm8LWYzTULJSEX1MaNG2Xw 4MHyxhtvSEpKiiQkJIiPT4hjsg37ydbAwJvl559/LrQYEhMTpWnTOPH09BUvL5OMHTv+ijKpqamy b98+uXDhQqHFoUoOijiZ3wjYgC3AZse/2zWZlw6hoVUcswQ9JlBBoKd06nS/q8O6LpvNJs2b3yI+ Po8JrBej8U0pWzZGzp8/X2h1dujQVby8Bjm+QP4Ws7myLF68OOv19evXS5kyUeLnV0l8fALls8+m FVosqmTIazIv6DjzXx3baAA0dPz7uYDbVCXA9u3bOXv2ArAJ+AxYC/xAYKCp0OvOzMzk9dffpkWL 2+jWrRf79+/P0/oGg4HFi+dy770eVK3aj1tu+Z3161cQGBhYSBHD+vVrsVqHAEagIikpD7JmzVrA vj933NGNs2cnkJx8iLS0DQwa9BJ79uwptHjchYjwxRdf0q5dV7p2fYht27a5OiS35uovOFUIli5d Kv7+bS4bFw5lZfny5YVe9xNPDBSz+SaBBeLh8aaUKRMlJ06cKNQ6MzMz5Y033pbKletKnTotZMmS JXlaPza2ocDsrD56s/nWrOnuEhISxNc39LJjGRh4t8yePbswdsWtfPDBBDGbawh8L/Ce+PmFyZ9/ /unqsJwCnQNUFYVTp06Jv3+4wEKBTIHPJTS0gqSlpRVqvTabTby8TAKJWYnPbL5fpkyZUqj1Pv/8 y2IwBGfNO+rhESRr167N9fpr1qwRf/9wCQi4T/z9m0rz5rdkHav09HQxm8s4ZmoSgUQxm8vLH3/8 UVi74zbKl6+d7biJGAxD5OWXX3F1WE5BEXezqFIqPDycBQtmExbWD4PBi5iY94iPX4i3tzdffPEl 4eGV8PIKo0yZKk6/o6F9/G1mtiUZOV7G70wTJkxDZCD2i5wPYbPdwCuvjMj1+q1atWLXrk18+mkX vvtuJL/+uhhvb28AvLy8mDFjOmZzJ4KC2mMy1eWZZx6nYcOGhbMzbkW4fPSeprTC5OovOFXIss/3 uXjxYjGZogQiBMY65grtLB073uu0+gYNelHM5uYCM8VofEXCwipIYmKi07afE6MxRGBntq6Q96Re veZOrePo0aPy888/y65du5y6XXc2btz7YjbXEpgj8JH4+YW5zfEjjy1zvQWuKrDsF9rMnbuAlJRb gPPAEAAyM5uyZEkwFosFs9mc80by4H//e5uYmIksWDCDqKhwxoxZQ1hYWIG3ey01a1Zn584ZwOtA KvAd9957p1PriI6OJjo6+voFVZbnnhtEYGAAX345laAgf157bTG1av339lClg94CVznVsGGvMnbs Jmy2VOy36DEAZzEay2GxXMjqWihpjhw5QpMmN3HmjBG4wE03NWfJkh905iRVaHRCZ1Wk0tLS2LRp E0ajkcaNG/PPP/9Qr14zEhPTgY5AG3x9P+bRR2/k44+vdW1Z8ZeWlsauXbswm81Ur15d5zFVhUqT uSoyiYmJtGzZnlOnPBBJo1q1UFatWsT8+fMZOXIM//xzhipVqvHoo/fTr1/fQj9JqZQ7yWsy1z5z lW+DBr3M4cPtsFrHA8KuXb3o3fsxFi/+FYvldSCZ1NTXaNKkkSZypQqZfsJUvu3evQ+r9U7sjQcP 0tI6sXz5BiyWj4A+wEAslqHcf/9jtGgRx7hx76G/0nJn3bp13HrrPbRu3ZFp06ZfdtxsNhvTpk1j wIDn+OSTT8jIyHBhpKq40Ja5yrcmTerx559fkZZ2M5CJyTQDs9mTCxeyn+Tcz8GD+zl48ALr17/C d9/NZuPGta4KuUTYvHkz7dvfhcXyJhDOli0vcepUIikpFs6evcDOnX+ybt0ZLJaumM2zmTdvKYsW zdE+/FJO+8xVvl24cIF27e5i16592GxW2rRpyf33d2HgwNFYLO9hnz1oALAEaAPsBpqwbt1yWrRo 4crQi0R6ejqbN2/GYDDQqFGjq86Y9F8DBjzHxIkhwHDHklUYjd3w8LgHq7UMMBE4AfgB6fj51WDN mh+oX79+oeyHcg3tM1dFJjAwkPXrf+HgwYMYjUYqVaqEwWDAZPLlo48mc/DgPk6cCMKeyME+PWwt Vq1a5fbJ/PTp07Rq1YGEhAxEMqhatQyrV/9MQEDAddf18DBgMGTybxsoA5vNRGbmJOBP4Dv+nSDb G6MxjOTk5ELZD1VyaMtcFZrff/+dZs1uwn5zzcbAIaAu8fHzufnmm10aW2F75JH+zJhhJD39I0Dw 8XmUp54qx3vvvX3ddXfs2EGLFm1JTn4FCMfL62Ws1vrYp9mzAvWBu4BH8fD4kYiISezdu1WnvbuO kydP8vXXX5OWlkbXrl2L/cVFeW2Z6wlQVWiaNm1Kr17dsbfM6wB16NLlDrdP5AA7duwlPb0z/54c vpNt2/7K1bp16tRh9eoldOv2B7fe+gOvvz4As3kD8BOwB1/fcKKjfyQiohOtW6/g11+XaCK/jmPH jlGnTlOGDdvFiBH/0KTJTaxd617nbrRlrgrdtm3bWLlyJY0bN6ZVq1auDqdI9O//LNOmnSEtbSpg w9e3B4MH1+Wtt0bna3uLFy/mmWde5eLFC3Tr1pnx48dc92ra06dPM2nSZM6cOU/nzqXjS/RqBg9+ kQkThMzMcY4lX9G8+Zf89ttSl8Z1LXrRkFLFwMWLF2nf/m527PgLERvNmzdi0aLZ+Pr6Fkn9Z86c oU6dZpw+fRPp6VUwmz9h8uR3efDBnkVSf3Hz4INP8O23DYGnHEvWUr36YPbs2eDKsK5JT4AqVQwE BASwbt0yDhw4gIeHB5UrVy7SoYPTp0/nzJmWpKdPBcBiuYUXX3yk1Cbz++7rxNy5z5Ka2hIIxtt7 CPfc09HVYTmVM/rMb8d+in0v8JITtqeUW/Dw8CA2NpYqVapgs9kYPfot6tRpzY033sH69esLte6k pGSs1qhsS6KxWJIKtc7irFy5cmRmnsF+v6Bm2Gx/ERNT3tVhOVVBk7kRmIA9odcGHsA+/kypAtu5 cyfz5s3jr79yd+KwOHvppVd555357Nz5JmvW9KBduzvZvXt3odXXqVNHfHymAQuBPzGZnqJbt66F Vl9xN3nyl1itw4EEIJGMjG/54IOprg7LqQqazJsB+7CPObNiHwB7dwG3qRRjxrxL06bt6d17Cg0a 3MjkyZ9fs/zUqV9Qu3ZLatduyfTpXxVRlLk3depXWCxfADcDj5Ca2ps5c+YWWn2NGjVi7twvqVbt VSIi7qRXr1g++eS9QquvuPPwMADZb3tg1fsF/ce9wJRszx8CPvpPmaKfokOVaPv27RNf3zCB445Z ff4SX98gOXPmTI7lv/76WzGbqwgsFVgiZnOMfP/9zCKO+trCwysL/JE1U5GX1xPyzjvvuDqsUmPz 5s1iNocJfCAwXczmCvLttzNcHdY1UcRzgOowFeV0R44cwcenBlDOsaQaXl4RJCQk5Fh+8uQZWCxv A+2BDlgsbzJlyndFFG3uvPrqC5jN9wFTMBqH4u+/gAcffNDVYZUaDRo0YOXKRXTrtpE77ljAt99+ xAMP3O/qsJyqoKNZjgEVsj2vABz9b6FRo0ZlPY6LiyMuLq6A1Sp3VqtWLazWP4HfgBbAzxgM56hU qVKO5f38fIGz2ZacwWTyKfxA82DgwKeIjCzLrFkLCA0NYujQdURFRV1/ReU0TZo0Yc6cL10dxlXF x8cTHx+f7/ULOlbKE/t05e2A48AG7CdBs5/ZcfxiUCr3FixYQPfuvRDxxtsbfvppFm3atMmx7Lp1 6xx3GXwesGE2/48VKxbQrFmzog1aKSdyxUVDdwDvYx/Z8jnw1n9e12Su8iU9PZ1Tp04RERFx2aTR Odm0aROTJn2BwWCgX79HadiwYRFFqVTh0CtAlVLKDeiNtpRSqhTSZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQ ZK6UUm5Ak7lSSrkBTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5gYIk83eB3cBWYC4Q5JSIlFJK5VlB kvkS4AagPvAXMNQpERWB+Ph4V4dwBY0p94pjXBpT7mhMhacgyXwpYHM8Xg+UL3g4RaM4/vE0ptwr jnFpTLmjMRUeZ/WZ9wEWOmlbSiml8sjzOq8vBSJzWD4M+Mnx+BUgHfjWiXEppZTKA0MB138EeAJo B6Repcw+oGoB61FKqdJmPxBbFBXdDuwEwoqiMqWUUldXkJb5XsAbOON4vg54qsARKaWUUkoppZzP CGzm35OlxUEwMBv7BU+7gBauDQewj9HfCWzHfiLZxwUxTAVOOmK4JAT7SfC/sF9XEFwMYnL1xWo5 xXTJ89iH64YUaUR2V4trIPbjtQMYWwxiagZswJ4XfgeaFnFMFYAV2D9vO4BBjuWufK9fLSZXv9cv 8xzwDfCjK4P4j+nYh1KCfTSPq69cjQEO8G8C/x542AVxtAEacvkH7x1giOPxS8DbxSCmDvw7pPbt YhIT2D+QPwMHcU0yzymuttgTlJfjeXgxiCkeuM3x+A7sSawoRQINHI/9gT1ALVz7Xr9aTK5+r2cp DyzD/oYqLi3zIOyJszgJwf7HK4P9y+UnoL2LYonh8g/en0CE43Gk43lRiyHnVjBAV+DrogslSwxX xjQLqIfrkjlcGddM4BbXhPL/7dw9aNRwHMbx70ELWs5JEHXQdOkmWungUKhIhwpCN1/xdXCtDoq4 6JOMo4QAAAJ8SURBVOSqiy5WRB06CYcKIoib4KJXKIiDWGuLSkHEt0EcdHiSJr3rIUWbX4bnA6FJ lj70fpf8X7sgYXGmCWBven6AmM+vqIG+b1Wo9UwDrRAsiqp1QMXdDwxRnYf5NrRb9SbwArgO9IQm kpPAN2AeuBOYI2HxF+9z4bzWcl2WhM4P8/vAwfKiLEhYnGkUuJyeV+lh3gQuAs9Qi3ig9ETtmTYD s8A7YA71aKIkwAywhmrUOuSZ6i33/1rrK/VfE/egB1OTf1/L/j91AduBa+nPH8C50ERag38KfYgb 0Yd4KDJQB7/ToyqqslmtB22iu1C4V5Wa70I9vh3AGdRSj3YDjQlvAk6jcfUIdeAuMIYaUkVRtV5H 83ljwPfC/dBav4TevtPAB/TQvB0RpMV6lCkzCDwIypLZB4wXrg8DV4OyJLQPs2Q7gDdQnWGWY8BT YFXZYVIJeaYtaJJvOj1+AW+BdcG5AB6innHmNbC2zEC0Z/paOK8BX0pNI93AI9SIykTX+lKZYBm1 vlIt8/Oo+9QL7AeeAEdW6Hctx0f0kulLr4fRDHKkV6jltBoV9zBaZVMF98gnY4+isbxoI6iVOUrn XcdlmkJjrb3pMYd6ffORoVIN8jHzPrQv5FNcHEAvlOwFswutHilTDfUOXgJXCvcja71TpqrVOkNU azXLVrQkqhLLfVJnyZcm3iJffVCmCeA96s7NAsfR2O9j4pYmtmY6gTarzaAhvCYaMovI9JP871T0 hpgx86VydaM5mCngObAzKFOxpgbQvNUk2mjYX3KmQbR8dJK8hkaIrfWlMu0mvtbNzMzMzMzMzMzM zMzMzMzMzMzMzMzMzMzMLNIf1QicDABfA2sAAAAASUVORK5CYII= \"></div>"
"payload": {
"type": "OutputContainer",
"psubtype": "OutputContainer",
"items": [
"<div class=\"output_subarea output_text\"><pre><matplotlib.collections.PathCollection at 0x7f2101fa7ed0></pre></div>",
"<div class=\"output_subarea output_png\"><img src=\" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8U9X7wPFPmq6kkw5aWkaBMmXvIVoEHCAKqKAoqKgI CogLBZGhoqLg1wEqoCAulPUTZciSAgKCIBtEpqwCld2mI22e3x8JtUiBjrRp0+f9evEiuTn3nufe Jk9Ozj33HlBKKaWUUkoppZRSSimllFJKKaWUUkoppZQqclOBk8D2HF57HrABIUUakVJKqSweuSw3 Dbg9h+UVgA7A306LSCmlVKGK4cqW+SygHnAQbZkrpZTL5LZlnpO7gaPANifFopRSKp8887meGRiG vYvlEkPBw1FKKZUf+U3mVbF3u2x1PC8PbAKaAacuK1i1quzfvz+/8SmlVGm1H4jNbeH8drNsByKA yo5/R4FG/CeRA+zfvx8RKVb/Ro4c6fIYNCb3iktj0pic/Q97oznXcpvMZwBrgerAEeDR/7wuealU KaWUc+W2m+WB67xepaCBKKWUyr+CjGYpseLi4lwdwhU0ptwrjnFpTLmjMRWeohiBIo7+H6WUUrlk MBggDzm6VLbMlVLK3WgyV0opN6DJXCml3IAmc6WUcgOazJVSyg1oMldKKTegyVwppdyAJnPldCLC 9u3bWb9+PSkpKa4OR6lSIb93TVQqR1arlTvv7M6vv27GaAwmKCiFNWuWUrFiRVeHppRb05a5cqpP PvmU1auTsVj+4uLFLSQkPMRjjz3j6rCUcnuazJVTbdu2h5SUToA3AJmZXdi9e49rg1KqFNBkrpyq UaMbMJvnAimA4On5LfXr13F1WEq5Pb3RlnKqzMxMund/mEWLlmI0BhIRYWb16p8pV66cq0NTqkTJ 6422NJkrpxMRDh06REpKCtWqVcPLy8vVISlV4mgyV0opN6C3wFUlxsWLFzl58iT6Za9UwWkyV0VO RHjuuaGEhkYSE3MD9eu34tSpK+YCV0rlQW6T+VTgJLA927J3gd3AVmAuEOTc0JS7mj17NpMnL8Bq PUxqaiK7d7eid++nXB2WUiVabpP5NOD2/yxbAtwA1Af+AoY6MS7lxtat+53k5PuBUMBARsZTbNq0 0dVhKVWi5TaZrwbO/mfZUsDmeLweKO+soJR7i42NwWRaCWQAYDCsoEKFSq4NSqkSLi+jWWKAn4C6 Obz2EzAD+DaH13Q0i7pMeno67dp1ZsuW43h4ROHhsZ1VqxZTt25Oby2lSqfCHJoYQ87J/BWgEXDP VdbTZK6ukJmZya+//kpSUhItWrQgNDTU1SEpVazkNZkX9K6JjwAdgXbXKjRq1Kisx3FxccTFxRWw WlXSGY1Gbr75ZleHoVSxER8fT3x8fL7XL0jL/HZgPHAz8M811tOWuVJK5VFhdbPMwJ60w7APURyJ ffSKN3DGUWYdkNP4Mk3mSimVR3o5v1JKuQG9nF8ppUohTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5 AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG8htMp+KfSLn7dmWhQBLgb+AJUCwc0NTSimV W7lN5tOA2/+z7GXsybw6sNzxXCmllAvkeuZnIAb4CajreP4ncDP2FnskEA/UzGE9EZH8R6iUUqWQ wWCAPOTogvSZR2BP5Dj+jyjAtlQpMHPmTPz8ojAaw6hYsTZHjx51dUhKuQ1PJ21HHP9yNGrUqKzH cXFxxMXFOalaVVJs27aNHj0eBV4FWnLkyLvUqdOKc+cOuzo0pYqF+Ph44uPj871+QbtZ4oATQDlg BdrNoq5i4MCBTJjwJ/bTLACpQACJiQmEhYW5MDKliqei7Gb5EXjY8fhh4IcCbEu5uYCAACAp25IU QDCbzS6KSCn3ktusPwP7yc4w7P3jI4B5wEygInAI6A6cy2FdbZkrzp07R0REVdLTuwJtgPdo1iyE 9etXXFbu999/5+jRozRo0IDKlSu7JFalioO8tszz0s2SX5rMFQAJCQk89FAfjh5NpF27lkyY8AEe Hv/+OOzXbzBfffUDnp71yMhYx9dfT6Fr1y4ujFgp19FkrkqM9evX8+67H5OebiUurgkjRkwkOXkz EAhswmxuz8WLpy9L+EqVFprMVYmwYcMG2rbthMUyAjDh5fUinp5tSUmZm1XGyyuAU6eOEBysFxer 0ievydxZQxOVypP335+MxTIMGAiA1ZpMZuZIYBdQG5hOeHgkQUFBLoxSqZJDk7lyiYyMTMA725Iq VKxYnoSEFhgMPgQHB7J48bxLrROl1HVoN4tyiZUrV3LHHd1JSXkPMGM2P8fkyWO49957OHv2LGXL ltW+clWqaZ+5KjGWLFnCG298iNWawcCBD9Oz5wOuDkmpYkOTuVJKuYGivAJUKaVUMaHJXCml3IAm c6WUcgOazLOxWCz07/8sNWs2p0OHrvz111+uDkkppXJFT4Bm06nTffzyC6SmPovBsJ7g4HHs2bOF 8PBwV4emlCpldDRLPqWkpBAQUIbMzPOADwD+/l347LMH6NGjh2uDU0qVOjqaJZ+MRiP2Y5fsWCLA Bby9va++klJKFROazB28vb3p128AZvNtwGd4ez9B2bL/cNttt7k6NFVMHDx4kKVLl3Lo0CFXh6LU FbSbJRsRYcqUz1m2bA0xMVEMG/ai3rFPAfDJJ1N4/vlheHvXJT19Ox98MJYnnujj6rCUG9M+c6Wc LCEhgSpVbiA19XegKrAXX9/m/P33n5QtW9bV4Sk3pX3myu19/fXXBAaWx9s7hNatO2CxWAq1vsOH D+PtXQV7Igeohrd3RY4cOVKo9SqVF5rMVYmyYsUKevXqz8WLU7BaN7J2rQ8tW7Yv1DpjY2PJyDgE rHcsWUtm5lGqVKlSqPUqlRfOSOZDgZ3AduBbLo3rU6oQvP/++8AjwB1AFeBztm3bXKh1hoaG8t13 X2A2d8Tfvwp+fncxa9ZXlClTplDrVSovCjo5RQzwBFALSAO+B+4Hphdwu0rlyNPTEziUbclhimKO lc6d7+TUqcMcP36c6OhozGZzodepVF4UtGV+AbACZuyfKDNwrKBBKffz/vvvU6VKPWrUaMgPP/yQ 7+28+uqrGAzxQA9gFHAH7dq1ybHsH3/8wZgxY/jwww85d+5cvuu8xM/Pj2rVqmkiV26rL3AROAV8 lcProkq3kSNHCgQKjBcYKWCSmjVryWOPPSapqal53l58fLxUqVJLwsIqSK9ej4rVar2izIIFC8Rk Chej8UXx9b1fKlSoIWfOnHHG7ihVJLBfuZhrBR2aWBX4CWgDnAdmAbOBb7In85EjR2Y9iYuLIy4u roDVqpLEz688Fsv7wL2OJa8BCwArYWHnOHFiL0aj0al1Vq3agAMHxgL2i768vXvzxht1efHFF6+5 3tixY/ntt99o2LAhw4cP16nrVJGJj48nPj4+6/no0aOhCMeZ9wA6AI87nvcCWgBPZyvj+JJRpZWv bxRpaV8B7RxLJgBbHf9X4bPPXuOxxx5zap1hYZU4fXo5EAuAwTCaIUPSefvtMVddp2nTm9m48QDQ GVhE7dpl2blz/VXLK1WYinqc+Z/Yk7fJUWl7YFcBt6nczN13t8XeG7cS+w+5N7G3A3yAaE6dOgWA zWbj0KFDHDt2jII2ADp37oSv7/PAUWAdJtNkOna8+q0ZNm3axMaNG4EtwMfAVnbt2sOSJUsKFIdS RaWgyXwr8CWwEdjmWDa5gNtUbmbGjK/o3r0F3t73A72Bm4A6wHQMhl306NGD8+fP06xZW2rXbkVs bH26dOlJRkZGvuv8+OPx3HtvBAEBjYmI6MWUKeO46aabrlr+4MGDQBgQ6lgSCETpfViUysbFpxFU cbJhwwYJCCgvYBIfn7Iya9YsERHp1auv+Pg8LpApYBGzuYOMHTvOqXWfO3dOEhMTxWazXfHa6dOn xWDwF5gkkCzwlRgMfnL48GGnxqBUbpHHE6B6dkcVqaZNm3LhwhFELKSmnuTee+0nRX//fStpaY9g f0uasFge4LfftjqlzszMTB588HHCw6OJjo6lbds7SUpKuqxMSEgIc+d+hZfXMCAQo3EQX389mQoV KjglBqUKmyZzVSzUqFEVT89Fjmc2fH0Xc8MNVa+5Tm598MEEfvhhL1brCdLTE1mzxp+oqJrUrNmc b7+dkVWuS5cupKf/g81mJSPjDD179nRK/UoVBb1roioWjh8/TsuW7Th3LgCbLZnq1UNZvfpnp1yg 06XLQ8yb1wF42LFkNTAQeBezuQ8zZ35Kp06dClyPUs6U19EshX8dtFK5EBUVxe7d9hEl3t7eNGnS xHHpfsFVr14JH58VpKX1xv7ZWI79DhQdsFheZerUmZrMVYmnLXPl9i5cuEDz5rdw7JgHFouBzMwj wG9ARQyGN+nV6zDTp3/q6jCVuoxOTqFUDtLS0li1ahWbNm3itdfGkZLyPAZDMn5+k1m/Pp7atWu7 OkSlLqPJXJUa6enpeHl5XXrT59qGDRuYPn0GXl6e9O//ODVq1CikCJXKP51pSLm948eP07BhG0wm P/z9Q/n662/ztH6zZs2YOPF/vP/+u7lO5OPHf0BgYAQmUxC9ez9Jenp6fkJXqtBoMlclzl139WT7 9pux2VKxWOLp2/c5tmzZUmj1zZ07lxEjJnDx4kpSU/cye/YRXnhheKHVp1R+aDJXJYrNZmPz5l/J zBwBGIF6wN2sWbOm0Or88celWCzPADWBsqSkvMb8+UsLrT6l8kOTuSpRPDw8CAwsC/zhWJKB0biF cuXKcfbsWV59dRR9+jzFrFmznFZnREQIXl7Z7x+3i/Dw0KuWV8oV9ASoKnHmzZtHz55PYDB0xGDY SbNm5Zgz50saNGhFQkJL0tMbYDZ/zNChjzB8+EsFri8xMZH69Vty7lwjMjND8fKazfLl82nevLkT 9kapnOloFlUq7N69m7Vr1xIeHk6nTp345ptveOqpmSQnz3eU+Btf37pYLOfzPNolJ2fPnmXmzJmk pqbSqVMnYmNjC7xNpa5FrwBVpUKtWrWoVatW1vPU1FRstuxdH6FkZKQjIk5J5mXKlOHJJ58s8HaU KizaZ14MiQiZmZmuDqNEue222zAaFwHTgM34+vamc+d7ddo3VWroO70YERFeeulVfH398fX144EH +uh45lyqVKkS8fGLaNbsGypVepjevSvwzTdTXB2WUkVG+8yLkc8+m8rgwR+RnLwQ8MNkeoD+/esz fvybrg5NKVXE9ArQEmzhwniSkwcC5YBAUlJeZtGiFa4OSylVAmgyL0YqVIjAy2tz1nODYTNRUREu jEgpVVI4o5slGPgMuAH7nHV9sN9f9BLtZsmlxMREGjRoxfnztRDxx9PzF9at+0Xv6KdUKeSKcebT gZXAVOxDHf2A89le12SeB+fPn+fHH38kPT2dO+64g6ioKFeHpJRygaJO5kHAZqDKNcpoMldKqTwq 6hOglYFE7IN7/wCmAAWftFEpVST++ecf+vUbTPv23Xj99bfJyMhwdUgqnwp6Bagn0AgYAPwOvA+8 DIzIXmjUqFFZj+Pi4oiLiytgtao4mzRpEoMHjyQ93UqVKhX57bdlhIZeeWMqEeHdd9/ljz/+oHXr 1gwcODDfddpsNhITEwkODsbHx6cg4ZcoycnJHDlyhOjoaAICAvK0rsVioVmzOI4ejcNqfYB16yaz Y8effP/9F4UTrLqm+Ph44uPjXVZ/JHAw2/Mbgfn/KSOqaH377bfy4IO9ZOTIkZKSklKkdS9btkzA LPCJwBqBtmI0lhEfH39p2LCN7N+/P6ts3botBCoI9BGIlBtv7JCvOnfv3i3ly1cXX99Q8fHxlylT pl5R5siRIzJhwgT5+OOP5cSJE/nev6KyevVqadv2LmnWrINMnvyZJCQkyKuvjpSnn35Wli1bJiIi ixcvFn//MPH3jxWTKVi+/36WrF+/Xl5//XWZMGGCXLx48Zp1LFiwQAICbhSwCYhAknh6muT8+fNF sYvqOrAPKClSq4DqjsejgLH/ed3Vx6RU6dOnryOZ1hMIlMjIWElPTy+y+u+77z6BBx3JQQROC3gJ nBYPj3elQoUasnXrVvnf//4nECRwzlHupIBJtm3bluc6K1euIwbDx47t/Clmc6Rs3bo16/Xdu3dL YGCE+Po+KibTQxISEi2HDh1y5m471caNG8VsDhOYKvCjmEw1xN8/VDw9+wuMFbO5vEyaNEX8/cME Vjr2e7N4eweLr2+YeHgMEZOpq8TG1pc9e/bIunXr5J9//rminh9//FECAtpm+1uliJeXn5w9e9YF e63+Cxck8/rYu1i2AnOxnxTVZO4CaWlpAr4Ci7MlyLIyfvz4IouhT58+Ah2zJYgDAj6O1l+6GAyB YjAECngI+AkszVa2vPzf//2fiIgkJSXJL7/8IqtXr77ml5HFYhGj0Ttb61LE37+XTJ36b+u8U6ce YjCMy3rdw2OE9OrVt9CPRX499dRggTeyHZdVAuUve+7vHyJeXmUFPhBIFxAxGOoJfJRVztOzgXh5 BUlQUBPx8wuVhQsXXlbPhQsXJCoqVjw9hwn8LCbT3dKx4735innjxo0yadIkWbRokdhsNmcchlxL Tk6WtWvXyrZt24q87sLkimR+Pa4+JiXWli1bpEmTthIVVUPuv7/PdX/+Hj9+XMA724deBO6W/v37 F1HEIseOHROjMVCgn8AkgRiBLo5YRjpa45MdyXe5QBmBQwJTxWDwkzNnzsixY8ekfPnqEhjYQvz9 60qDBq0lKSkpx/psNpsEBIQJrM3qKvDzq5nVFSEi0rRpe4GF2Y7Jd9Khwz1FdUjybNCg5wVGZIt3 meM4Xnp+j0Ajgf8JtBfoLLDf8eW4wVFmj0Cw49iKwBrx8wu9otvt2LFj0r37I9K48S3y7LMv56tb 7tNPp4jZXE7M5j7i719H7r//0asm1Tlz5kjv3k/Kiy8OlZMnT+br+GS3f/9+iYysIoGBjcVsriid Ot0nVqv1inJ79uyRevVai69voNSq1VS2b99e4LoLG5rM3cPx48fFbA51JL4d4uXVW9q2vfOa69hs NvH0DBT4wfEBPipQRhYtWiQiIp999pnUqNFIatduInPnznVKnIcOHZJt27ZJampq1rIDBw5IXFwH qV27iVSvXkfM5sbi6fmCGI2hAhH/+bJpLoAYjcEya9YsERG5++6e4un5iuP1TPH1fUCGDh1x1Rjm z58vZnOYBAbeJX5+VaV37ycvSyZvvDFWzObWjuNxSMzmhjJx4qdO2f/CsGPHDvHzCxMYJ/CF+PpW EC+vAMff9WeBQIFkx/FJFygnPj7BUq9eC/HxuV/gmMBbAi0vO9Zmc7QcPHjQqbGmpqaKt7efwF5H PRbx84uVNWvWXFH2jTfeFg+PcAF/gTAJDo6Q06dPF6j+1q1vEw+Pdx11p4rZfLNMmjTpihgjI6uI wfCh2Lv9PpeQkPJy4cKFAtVd2NBk7h4GDRokcFu2D2O6GI0+YrFYrrne4sWLHQm9ohgMZnnqqWdE RBx91AECHwq8I2CW7777Lt/x2Ww2ue++XmI0BoqnZ6QEB0dednLzkszMTJk5c6a89dZb8uijfcTe 5XLQsU8XxGiMkPXr12dtc8GCBVK2bHWB1dn2fZrcffeD14zn4MGDMmfOHFm7du0VrcKMjAwZOPAF MZmCxc8vRIYOHVnsf45v2bJFund/RDp27CFz5syVJUuWSO3aLaRs2Sri5RUt2buVzOb6Mnv2bLl4 8aLcc08v8fcPl/DwSuLtHeJosYvASvH3D7vsS9cZTp48Kd7ewWI/TxIr0E78/OJkzpw5V5T19Cwj 0FvglNi7joJl6NChV5SzWq3ywguvSHR0TYmNbZTV9ZaT8PDKAn9le6+8LQMHPndZme3bt0tAQI3L vtiCgprm+IVTnKDJ3D1ER1dztKwufWgTxMPDW/78809ZtmzZNZN6UlKSbN269bJRG4GBMQLfZHtD /08qVqyT7/g++eQTRwvrJbF3p1SUihVrXHMdq9UqtWo1dnStdBeDoYL07Nkn6/X+/Z8VP79a4uHR UKCnQIaARczm9jJ27Lh8x+pOrFarVKvWQDw9hwhsF6NxjERFxUpycvIVZSdOnCS+vsESGFhP/P3D ZMmSJU6PJzMzU7y8QgX6CuwW+FjALJs3b76irL0L8HS29+DT0rlz5yvKvfjicDGb2whsEfhZzOZI Wb16dY71t23bWYzGkY7PyUXx82sh06ZNu6zM0aNHxdc3ROCso96LYjZHya5du5xyDAoLmszdQ6VK dQXqCHQXGC9Q3fHT21ugjHh4BObpw2k2VxCYl+2DNEUiI6+dfK+lXbt2Yh9SeGl7m8RgCLjuejab TebMmSMjR4687GTZ3r17xWQqK/bRLecF2ggEird3GenSpWeO/aDZtzlx4qdSpUpDqVq1oUyaNCXf +1USJCQkSMeO90l0dE255Za7rjky5+TJk7Jp0yY5d+5cocTyzz//OLqAMrL9UmgvP/zwwxVlvbyC BdY5ytkEbpLXXnvtinLR0TUdifzSe2uMDBr0fI71HzlyRGJibhB//1jx9Q2Tnj0fk8zMzCvKPf30 8+Lnd4MYjUPEz6+h9OrVt9j/OkOTuXt46613xWyu62jxdBKDwUugrKM/VATGi7d3eK6399BDjwhE if1E4P8JlJHhw4fnOz77EMRB2T5wf4nRGJTv7a1bt04CAxtn255N/Pyqy9KlS6+77rRp08Vsrub4 6b5SzOaq8vXX3+Y7FpV7SUn2senwj1w6xxEQ0CjHv1tAQLhAuMBzAh3FYCgrn3565bmLatUaCyzK ei8YjQNk+PCrnzNJT0+XnTt3yt9//33VMjabTebNmydjxoyR2bNnF/tELqLJ3G3YbDZ55533pFat FtKoUZzYh/L1z5bskgWMedpe9+49xcsrQry9I+XppwcWKL4dO3aI0RggME3sY50byqOPPpnv7V24 cEHKlIkW+Mqxb59LWFjF654jEBFp0+ZOgVnZjs0Madeua75jUXkzePBL4udXX2Cc+PreJU2a3Jzj cFIfnwCxj8x5W2CKeHoOkHffffeKcvPmzROTKULgDfH0HCChoeXl2LFjRbErxQqazN3P9u3bHd0r 1QUsjoT1f2IwBLo0rrVr10rDhjdLTEwDGTZspGRkZBRoe5s3b5YqVeqJ0egt1ao1zPXwsY4duzv6 ai8l8w/k7rt7Zr1utVpl4MAXJCionISHx8iECZ8UKE51OZvNJt9884307/+MjBs3/qrDG2+7rZt4 ez/u6EpbJyZThGzcuDHHsr/++qsMHvyCvPrqyFKZyEU0mbulkydPiv0qympiH9rXQsAkvXr1cnVo xcL69esdV0yOEhghfn5hsmnTpqzXhw0bJWbzTWIf2fGHmM2VrzlCIjfOnDlTaP3Q7urMmTNy661d xdvbT0JDK8j33890dUjFGprM3dPNN3cQ+0UhVQR8JDi4nNOHmV3PokWL5JFHHpVhw4Zd974fRW3r 1q0yaNDz8swzL1zRoq9WrYnY7xNzqeX+sfTs+fg1t7ds2TK58cY4adnyJpk3b17WcovFIrff3k28 vPzFy8tPund/+JonZ5XKLzSZu6eMjAwZOfI1ad26vTz+eL8ibxWOHv2a48ukgUCoBAZGXfWqzOKm WbP2jr74SyfUnpdBg164avkff/xRwCTwstivxDTL9OnTRcTeP2wydRNIE0gSs7mdjBkztqh2RZUi aDJXhcHDI0j+Had+UaC6DBxYsJOoRWXNmjViNoeJ0ficeHv3kdDQ8nL06NGrlq9Y8QaxX1j17zDO kJAqIiLSqFFbgSWXnWy99dbie2sAVXKRx2SuEzqrXLHZkoHOjmf+wK0cOnTIdQHlQatWrdi4cRWj R4fy5pu12blzI9HR0Vctb7GkY7+78yWRpKVZAahatSKenvGO5YK390piYysWVuhK5Zoz5gC9HseX jCrJAgKiSUoaBjwNnAYa8Omnw3nyySddHJnzPf30QD7+eDbwPeAN9OTee5sza9YMjh07RrNmcVy8 WB5IJzz8Ir//Hk9ISIhrg1ZuxxUTOl+PJnMXsVqt3H773axZswVvby/GjXuFvn375mtbf/zxB61a 3Upamg9wjnvuuZvZs791bsDFhIjQvXtP5s5dAgi33NKSxYt/wsPD/kP24sWLrFy5EqPRSFxcHCaT ybUBK7ekyVxlad48jg0bzgL/Aw4BA5k3bwZ33XVXvraXlpbG/v37CQkJITIy8vorlDJJSUl89dVX 2Gw2evXqRWBgoKtDUiWYJvNSatq0afTt+yIZGcn4+4fyyy//R/Pm7RBZD9RylHqeuLjNrFjxiytD dUuHDh2iRo3GpKdHAh54eR1jx47fqF69+nXXVSoneU3megLUDezYsYM+fQaQkTEB+JukpN60bn07 9u9QS7aSSfj4eBeormXLltGz5+M89tjT7Nq1i6SkJFJTUwu0TXfQuXMP0tPvAXYA27BaH6JTpx45 lrXZbJw/fx5t5Chn0mTuBmbMmAE0Bu7HPtJkGFZrOrfe2ga4C/gcGA58zeuvv57ven744Qfuuqs3 M2Y0ZOrUUG64oQUBAcGYTAE0aXIjNpvNCXtTMh09mgjcjr0hZQBuJyHhzBXlFi5cSFBQWcLDo4mO rsbWrVuLOFLlrjSZuwF7//XfwCNAKBAO2Pj880m88EJPoqPfo1atn1m9ejFNmzbNdz0jR75HSsok 7CNaLMCNwHngMJs2naJPn8cLuislVo0aFYFPgTQgHfiU2NjLhz8eO3aM++57mKSkH7Fak0hIGEWH DndhtVoLJaZ9+/bRq1dfOnbswfTpX2X9EsjMzCyU+pR7MAKbgZ9yeM1FQ+5LD6vVKiZTmMCNAkkC FvHwaCcvv3z124bmR82azQVWOC6WaSL/3ptaBCZJhQo3OLW+kuTMmTNSpkxFAbOAnwQGRsupU6cu K7NgwQLE4WkEAAAgAElEQVQJCro12zGzT+V2rfuR59fhw4clKChCPDxeE/hazOZaMmTIUKlZs4kY DB4SGlq+UCarUM6Diy4aegbYldfKlXN4enrStGkL4FnADzBhsz3HihW/ObWefv0ewmweACwHbMB4 x7+9wAYiI8s4tb6SpEyZMpw+fYh165azZs0Szpz5m/Dw8MvKREdHY7Xuwv5rBmAfmZkXCAsLc3o8 M2bMwGLpis32KvAgFst3jBs3kT17eiKSxunTX9K1a08OHz7s9LqVazgjmZcHOgKfUTSjY1QOqlWr hJfXr1nPPT1/pXLl8k6tY9Cgp3n77aeoUWMoRuNe7Al9D9AIg+E72rZtxbFjx5xaZ0liMBho0aIF rVq1wmg0XvF6/fr1efTRHvj5NcLf/wHM5jZ88MF7+Pn5OT2WjIxMRHyyLfHBZrMh8izgCbTFaGzJ xo0bnV63cg1nJN9ZwJtAIPAC/17zfYnjF4MqTKdOnaJJk5s4dy4a8MDf/yAbN64iKirK6XU9++wQ JkywkpHxP8eSL7D/6StgMOxj5cqFtGnTxun1uos1a9Zw8OBB6tevT926dQuljn379tGwYSuSkkYB VTCZXiE1dTci24GqQCp+fvX4+eep3HjjjYUSgyqYvA5N9CxgfXcCp7D3l8ddrdCoUaOyHsfFxREX d9WiKp/Kli3Lrl0bWb58OSLCLbfcUmgXrZw6dZaMjEbZltQAKgO/IzKGu+/uzZkzBwtUR2JiIoMG vcyuXXtp0qQe7703hqCgoAJts7ho3bo1rVu3LtQ6YmNjWb16CUOGvMa2bdtJTDyMweCBwdAEb++7 MBq3cMcdLQs9DpV78fHxxMfHu6z+N4EjwEEgAUgGvvxPGRefRlDONnPmLMecmzsEjgrcJDBcLk3s bDSGFmj7qampUrVqPfHyGizwi/j4PCqNG9+U40S96tpmzJjhmEv2lIBVvLwelYYNW8v8+fMvmwcz MzNTHnvsSQkNrSQVK1aX+fPnuzBqJeLaW+DejI5mKTXGjXtfgoPLidHoLxAtcEYgU6CvREfXKtC2 165dKwEB9cU+g7t9kmCzubzs3bvXSdGXHk8+OUhgfLYRNDskKqrGFeXuuusegVDH/Jz9BMyyatUq F0SsLsHFt8DVzvESxmazMXz4a0REVKVixRv44ov//rDK2fPPP8PZs8dJTT1L5cohQDRQBoPhO0aP fv6KKxx3797NuHHj+Pjjjzl79uw1t200GhFJ49+3UwYi1hxPKqprq1KlPL6+a7h0LA2GNZQvf+WJ 8fnzlwM/AC8BnwD3MXr0awDMmTOHGjWaUqlSXUaNGlOqLw4r7Vz9BaeuYejQEQJlBIwCRjEYAuWn n37K0zb69u0vECDQUqCO2Ceftm9v9OjRsnLlSjGbw8TTc4D4+HSTcuWqSmJi4lW3Z7VapVGjNuLr +4DA12Iy3SkdOtx9WbeAyp3k5GSpV6+l+Ps3l4CAzhIUFCnbtm27opzBECjwV7YW/MsSF3eLLF++ XMzmcgKLBTaK2dxUXnvtLRfsSelDHhvHeqOtUs7HJ5z09JbATOAicDOVK9s4cODPXG/D0zOYzEwr 0AhYD5iA3sA24A8qV67MwYP3AJOAc4Avjz12D599NuWq20xOTmb06LfYsWMvzZvX4+WXX8DHx+eq 5dPT0xGRa5YpKBHh5MmThIWF4elZ0LEDRSc9PZ1ly5ZhsVho06YNERERV5S56abbWL36IvZW+d/A gyxY8D1z5ixg6tSqwHOOkr9RterT7Nu3qeh2oJTK62iWouDarzd1TRAisFZgn8AWgQni5xclzz33 gvj7V5KAgEoycuTI62wjWOAjgUOOKyDXO1p3NoHW4ulpcvTHLnYsnyve3sGSnJxc4PjT09Oldu3G Ap4CnhIbW19SUlIKvN3/WrRokXh6lhEwCJjkpZdednodhcVms8lXX30t3br1kgEDnpOEhIQryqSn p0unTt3EZIqU4OBKMm3aNBEReeaZF8TD46VsLfYfpF69G4t4D0onimG3tauPiboGP78ogRscCbmi QLCUKVNWIExgtsB3AkHyxhtvXHUbECSwXeCCI6leyPbh7yvBwaGO7pd/L2M3marl+HNfxJ58hgx5 SSpXri/ly1eTRo2aS8+evXLsmunY8W6xTzJ9UiBRoJnExd3utOMjYh/pYTQGCbwrkCGwWsBPli9f 7tR6CsuQIcPEw6OKwGSBpyUgIEL++ecfSU5OlgEDXpCGDeOke/dH5Pjx41ese+DAAQkKihQPj+cF 3hSTqawsWLDABXtR+qDJXOVFjx49BOoKJDsS7euOxP59tuT7uYSHV7/qNqKjawr0cSS6co7HZwV+ FQiQiRMnitEY7BgeJwJHxccnSE6ePCkHDhyQ119/Xd5//325cOGCiIh063a/QIzANIFhjtZ+efH1 DZezZ89eVndwcBXHl86lWOeLv39Fpx6jvXv3CvhmG10jArfL4MGDnVpPYfHw8HP88roUe2d56aWX pF27zuLre5/AEvH0fFnKl68uSUlJV6x/8OBBGTJkmAwY8JysXbvWBXtQOpHHZF5yOv5UoThw4DD2 W+eaHUt6AmOx3/nvkjQ8PK7edbd69ULq1m1NcrI/9i6+H4GvAR+Cgnx4+OGHOXo0kQ8/bIrB0Bqb bSUjRoxg+/btdOjQDRF/IJlhw97i7793MHfuPMAKPAE0wX4b31RSU3fTtWtXKleujNlsJi4ujjJl /Dh3bhNwjyOaPwgKcu7l8fbJnzOx34OmOpAK7CQ29k6n1lNYbDYrEJBtSQjbt29n9eo1pKcnAl5k ZHTg/Plf+fXXX7ntttsuWz8mJoaxY8cUZciqmHL1F5y6hm7d7hFoLGBxtNreFqMxVCBQYJLABAE/ mThx4jW3k5mZKXPmzBHwEUjJagUGBLTJ+lm+bt06mT59umzcuFFERIKDKwk862jxWgRaSoUKMQK1 Ha34JIH2ApUFbhUoJwbDbQIvCISKl1eM3HzzbWIw+AvcKXC3GAx+snr1aqcfpyee6OfoTnpQoKrE xNQtMRcx+fqGCbR1dA99KuAnb731lnh7B2T7u9skIKBZvu6kOHz4q+LhESDgJeHhsYVyF8jSCO1m UXlx4sQJ8fYOdfSR1xDwl08++UTGjRsnkZE1pVy5mvLxxx9LZmamHDhwQA4dOpTjEMHJk6c4vgBM 2RKEiNncUhYuXJhj3fYvjc3Zfv5/JB4eoY7ulUvLVor9JG1vgVuydXWsF6gonp4VZPbs2dK3b195 4oknZPfu3YV2rP7v//5PnnjiCXn33XdL1DDJ+fPni6dnkBgMFcTDo5w0bnyjWK1W6dbtQTGbbxWY Id7efaVatQZ5Pnk8e/ZssQ9LXStwXuAJCQ2tUkh7UrqgyVzl1YkTJ+SZZwZL796PyC+//CIiIq+8 Mlw8PcPEYCgjNWs2krJlqzr60oMkJqaOWCyWrPWnTfvCkcSNAvcLdBSYK/CU+PuXzRq1kpaWJitW rJClS5dKUlKSREfXEhjhSM7pAm0lIKCs2K9AvJTMxzlaxEbx8Hg62/J/HF8ezWTMmDEuOW4lyd69 e+WLL76Qn376STIyMkTEPoLltdfekltvvVcGDHhezpw5k+ftdunSReDJbH8X+0nwa/ntt99kxIiR Mn78+CvOgah/oclcFdTnn38u4OdIyBvFPsrlXrGf4EwXuF1uv/2urPJVq9YR6CL2kSx7BEYLdBKI kmeeeUZERM6fPy+1azeVgIBGEhjYWsqXry6rVq1ydAHECkRITEwdWbFihaPuWwTuEjBL7doNZMOG DY6yywWOCfQUuFnAX/r16+eqQ1XqPf744wKtsv1i+k0MBr+rlp87d66YTBFiMAwTH5+eUqFCDU3o V4Emc1VQrVq1EXg5W2urlfw7RlwEZorZXD6rqyEmpoYjed8pECHwikCcmM0RWa3y558fKj4+D2d9 6D09h8k99/QSi8Uiq1evlj/++COrD/r333+XevUaSsWKVWTQoEFZLcmZM2cK+DuSvb9AdYEImTRp kmsOlJLTp0+Lj0+YQGuB/gKB0q/fU1ctX758Lfl3tioRH5+e8t577xVhxCUHOppFFVRQkD9wMtuS CGAu0AH7+2seFouFwYNfokWLxhw7loB9TtDzQHPgQ6Kigti9+y/MZvsomT//PEhaWicuXdCWkdGB v/56FZPJdMX9tJs0acLWrX9cEdd9991H377xTJ78PXAvsJrY2Egef7z0zj3qaiEhIRw79ieDBg3i 1Kl93Hffu/Tt2/eq5ZOSzgMxWc/T0ytz7tz5q5ZXxYurv+BUHu3evVs8PPwFnnb0WZdxtIZrCFR1 9GGvFqPRW3x9ywhsy3ZS0iTduz8o6enpl23zzTffEbO5vdjHs1vFx6enPPnkM/mKb968edK/f395 //33S8yIEmXXu/eTYjLdLfarhVeIyRQhv/32m6vDKpbQe7MoZ9i1axeDBj3LqVNn8PExc+rUWY4c OYFIT+z36YjAwyMIf//6XLiwPmu9wMA6rFr1DfXr179sexkZGfTo8Qjz5/+EweBJ06ZNWbRoNv7+ /kW7Y8qlUlJS6NfvWX788Sf8/YP48MMxdO3a1dVhFUt5vTeLJnN1VRcvXqRmzUacOnUPGRltsE/e nAx8iK/vezRvnsSGDb+RkrIO+8U02zCZ4jh6dB8hISE5bjMxMZHMzEwiIiIuvVmVUjnIazJ39v3M lRv55ZdfuHixEhkZbwOdgAUYDFuoUqUfDz0UwcKFs/jww3GYTC0JCmqBydSWqVM/JSQkhIkTJ2Iy RWI0lqFatQacOHECgPDwcCIjIzWRK+Vk2jJXV/Xjjz/y0EPvc/HiL44lyXh6hnP27KnLukeOHz/O wYMHqVq1KpGRkSxcuJA77+yFyFwgHHiM0NAETp7crxNMKJVL2jJXTnPLLbcQHHwcL6/ngLmYzV3p 1q37Ff3cUVFRtG7dmsjISACmTJmOyFDsMwnWBiZy+vRJQkIqU6ZMDCNGjHRKfDt37uSmmzoRG9uY fv2eJSUlxSnbVaok0qGJ6qr8/f3ZuHEVQ4eO5sCB6cTFxTFs2IvXXS84OAD7HN+X/A8wcuHC84CB 118fjsFgYPToUZetZ7PZ+P777zlw4AANGjSgU6dOV60jISGB1q3bc+HCcESacuzYWBIS+jBv3oz8 7KpSJZ52syinO3r0KJUr30BGRncgEpgAvA086SgxFV/f4SQnH8XDw/7jUES4555eLFmyl5SUtphM P/DUU/fxzjuv51jH9OnTefrphSQnf+9YkoLRGExKShJeXl6Fu4NKFYGi7mapAKwAdgI7gEEF3J5y A+XLl+evv7bQvv0RatdegK+vmX9vsQvgR2qqlbi429m4cSP9+w+mR4+H+Pnn1SQnr8Rme5vk5F/5 4IMPOH36dI51+Pj4YDCcy7bkAgaDR9aXQ3aZmZns3buXxMREp+6nUu4kEmjgeOwP7AFq/aeMywbd q+LhnXfeEfu0cf8nME8gXGC4gJeYTKECbwr0EvuMQf/ORuTnV1H279+f4zYvXrwolSvfIN7ejwl8 In5+9WXIkOFXlNu+fbv4+oaL/c6LvhIXd0eJuuOhKr1w8UVDPwAfAcuzLXPEpUqzdu3a88svW4Eg 4BFgKBCGvT/9EeAMEAu8D3TEw+Nzypf/gv37t1918uSzZ88ydux4Dh8+wW233UTv3r2uGPIYElKZ s2cfBkYCZ4GmjBrVm5EjnXMSVqnC4sqLhmKAlcANQFK25ZrMFdu2baN+/VbYk3h74GNgPvAF0NlR 6jX8/D7FZrNQu3YDZs/+gpiYmALVazD4AX8B0Y4lI7jxxpWsXLmCTz6ZxOrVG6lZM4YXX3wOPz/n zlCkVEG4Kpn7A/HAG9hb59lJ9lZQXFwccXFxTqpWlSQffPARzz77KmDEywsGDOjDp5/+hMUyGUjH bH6Mb775gC5dujitTm/vcKzWt4DHgTTgRh56qCYGg5k5c3ZisfTG13c5NWoc5fff4/XkqXKZ+Ph4 4uPjs56PHj0aimaQShYvYDEw+Cqvu7bjSRWazMxMGTJkuAQHR0lISAUZO3b8dfujLRaL/P3335Ke ni42m00mTPhEYmMbS40azWT69K+cHuNnn33muElYE4EoCQiIksOHD4uXl79jIgURyBR//wayYsUK p9f/X0lJSWK1Wgu9HlXyUcT3MzcAX2Lv+LwaVx8TVUjGjHlHfHxqCrwm8LWYzTULJSEX1MaNG2Xw 4MHyxhtvSEpKiiQkJIiPT4hjsg37ydbAwJvl559/LrQYEhMTpWnTOPH09BUvL5OMHTv+ijKpqamy b98+uXDhQqHFoUoOijiZ3wjYgC3AZse/2zWZlw6hoVUcswQ9JlBBoKd06nS/q8O6LpvNJs2b3yI+ Po8JrBej8U0pWzZGzp8/X2h1dujQVby8Bjm+QP4Ws7myLF68OOv19evXS5kyUeLnV0l8fALls8+m FVosqmTIazIv6DjzXx3baAA0dPz7uYDbVCXA9u3bOXv2ArAJ+AxYC/xAYKCp0OvOzMzk9dffpkWL 2+jWrRf79+/P0/oGg4HFi+dy770eVK3aj1tu+Z3161cQGBhYSBHD+vVrsVqHAEagIikpD7JmzVrA vj933NGNs2cnkJx8iLS0DQwa9BJ79uwptHjchYjwxRdf0q5dV7p2fYht27a5OiS35uovOFUIli5d Kv7+bS4bFw5lZfny5YVe9xNPDBSz+SaBBeLh8aaUKRMlJ06cKNQ6MzMz5Y033pbKletKnTotZMmS JXlaPza2ocDsrD56s/nWrOnuEhISxNc39LJjGRh4t8yePbswdsWtfPDBBDGbawh8L/Ce+PmFyZ9/ /unqsJwCnQNUFYVTp06Jv3+4wEKBTIHPJTS0gqSlpRVqvTabTby8TAKJWYnPbL5fpkyZUqj1Pv/8 y2IwBGfNO+rhESRr167N9fpr1qwRf/9wCQi4T/z9m0rz5rdkHav09HQxm8s4ZmoSgUQxm8vLH3/8 UVi74zbKl6+d7biJGAxD5OWXX3F1WE5BEXezqFIqPDycBQtmExbWD4PBi5iY94iPX4i3tzdffPEl 4eGV8PIKo0yZKk6/o6F9/G1mtiUZOV7G70wTJkxDZCD2i5wPYbPdwCuvjMj1+q1atWLXrk18+mkX vvtuJL/+uhhvb28AvLy8mDFjOmZzJ4KC2mMy1eWZZx6nYcOGhbMzbkW4fPSeprTC5OovOFXIss/3 uXjxYjGZogQiBMY65grtLB073uu0+gYNelHM5uYCM8VofEXCwipIYmKi07afE6MxRGBntq6Q96Re veZOrePo0aPy888/y65du5y6XXc2btz7YjbXEpgj8JH4+YW5zfEjjy1zvQWuKrDsF9rMnbuAlJRb gPPAEAAyM5uyZEkwFosFs9mc80by4H//e5uYmIksWDCDqKhwxoxZQ1hYWIG3ey01a1Zn584ZwOtA KvAd9957p1PriI6OJjo6+voFVZbnnhtEYGAAX345laAgf157bTG1av339lClg94CVznVsGGvMnbs Jmy2VOy36DEAZzEay2GxXMjqWihpjhw5QpMmN3HmjBG4wE03NWfJkh905iRVaHRCZ1Wk0tLS2LRp E0ajkcaNG/PPP/9Qr14zEhPTgY5AG3x9P+bRR2/k44+vdW1Z8ZeWlsauXbswm81Ur15d5zFVhUqT uSoyiYmJtGzZnlOnPBBJo1q1UFatWsT8+fMZOXIM//xzhipVqvHoo/fTr1/fQj9JqZQ7yWsy1z5z lW+DBr3M4cPtsFrHA8KuXb3o3fsxFi/+FYvldSCZ1NTXaNKkkSZypQqZfsJUvu3evQ+r9U7sjQcP 0tI6sXz5BiyWj4A+wEAslqHcf/9jtGgRx7hx76G/0nJn3bp13HrrPbRu3ZFp06ZfdtxsNhvTpk1j wIDn+OSTT8jIyHBhpKq40Ja5yrcmTerx559fkZZ2M5CJyTQDs9mTCxeyn+Tcz8GD+zl48ALr17/C d9/NZuPGta4KuUTYvHkz7dvfhcXyJhDOli0vcepUIikpFs6evcDOnX+ybt0ZLJaumM2zmTdvKYsW zdE+/FJO+8xVvl24cIF27e5i16592GxW2rRpyf33d2HgwNFYLO9hnz1oALAEaAPsBpqwbt1yWrRo 4crQi0R6ejqbN2/GYDDQqFGjq86Y9F8DBjzHxIkhwHDHklUYjd3w8LgHq7UMMBE4AfgB6fj51WDN mh+oX79+oeyHcg3tM1dFJjAwkPXrf+HgwYMYjUYqVaqEwWDAZPLlo48mc/DgPk6cCMKeyME+PWwt Vq1a5fbJ/PTp07Rq1YGEhAxEMqhatQyrV/9MQEDAddf18DBgMGTybxsoA5vNRGbmJOBP4Dv+nSDb G6MxjOTk5ELZD1VyaMtcFZrff/+dZs1uwn5zzcbAIaAu8fHzufnmm10aW2F75JH+zJhhJD39I0Dw 8XmUp54qx3vvvX3ddXfs2EGLFm1JTn4FCMfL62Ws1vrYp9mzAvWBu4BH8fD4kYiISezdu1WnvbuO kydP8vXXX5OWlkbXrl2L/cVFeW2Z6wlQVWiaNm1Kr17dsbfM6wB16NLlDrdP5AA7duwlPb0z/54c vpNt2/7K1bp16tRh9eoldOv2B7fe+gOvvz4As3kD8BOwB1/fcKKjfyQiohOtW6/g11+XaCK/jmPH jlGnTlOGDdvFiBH/0KTJTaxd617nbrRlrgrdtm3bWLlyJY0bN6ZVq1auDqdI9O//LNOmnSEtbSpg w9e3B4MH1+Wtt0bna3uLFy/mmWde5eLFC3Tr1pnx48dc92ra06dPM2nSZM6cOU/nzqXjS/RqBg9+ kQkThMzMcY4lX9G8+Zf89ttSl8Z1LXrRkFLFwMWLF2nf/m527PgLERvNmzdi0aLZ+Pr6Fkn9Z86c oU6dZpw+fRPp6VUwmz9h8uR3efDBnkVSf3Hz4INP8O23DYGnHEvWUr36YPbs2eDKsK5JT4AqVQwE BASwbt0yDhw4gIeHB5UrVy7SoYPTp0/nzJmWpKdPBcBiuYUXX3yk1Cbz++7rxNy5z5Ka2hIIxtt7 CPfc09HVYTmVM/rMb8d+in0v8JITtqeUW/Dw8CA2NpYqVapgs9kYPfot6tRpzY033sH69esLte6k pGSs1qhsS6KxWJIKtc7irFy5cmRmnsF+v6Bm2Gx/ERNT3tVhOVVBk7kRmIA9odcGHsA+/kypAtu5 cyfz5s3jr79yd+KwOHvppVd555357Nz5JmvW9KBduzvZvXt3odXXqVNHfHymAQuBPzGZnqJbt66F Vl9xN3nyl1itw4EEIJGMjG/54IOprg7LqQqazJsB+7CPObNiHwB7dwG3qRRjxrxL06bt6d17Cg0a 3MjkyZ9fs/zUqV9Qu3ZLatduyfTpXxVRlLk3depXWCxfADcDj5Ca2ps5c+YWWn2NGjVi7twvqVbt VSIi7qRXr1g++eS9QquvuPPwMADZb3tg1fsF/ce9wJRszx8CPvpPmaKfokOVaPv27RNf3zCB445Z ff4SX98gOXPmTI7lv/76WzGbqwgsFVgiZnOMfP/9zCKO+trCwysL/JE1U5GX1xPyzjvvuDqsUmPz 5s1iNocJfCAwXczmCvLttzNcHdY1UcRzgOowFeV0R44cwcenBlDOsaQaXl4RJCQk5Fh+8uQZWCxv A+2BDlgsbzJlyndFFG3uvPrqC5jN9wFTMBqH4u+/gAcffNDVYZUaDRo0YOXKRXTrtpE77ljAt99+ xAMP3O/qsJyqoKNZjgEVsj2vABz9b6FRo0ZlPY6LiyMuLq6A1Sp3VqtWLazWP4HfgBbAzxgM56hU qVKO5f38fIGz2ZacwWTyKfxA82DgwKeIjCzLrFkLCA0NYujQdURFRV1/ReU0TZo0Yc6cL10dxlXF x8cTHx+f7/ULOlbKE/t05e2A48AG7CdBs5/ZcfxiUCr3FixYQPfuvRDxxtsbfvppFm3atMmx7Lp1 6xx3GXwesGE2/48VKxbQrFmzog1aKSdyxUVDdwDvYx/Z8jnw1n9e12Su8iU9PZ1Tp04RERFx2aTR Odm0aROTJn2BwWCgX79HadiwYRFFqVTh0CtAlVLKDeiNtpRSqhTSZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQ ZK6UUm5Ak7lSSrkBTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5gYIk83eB3cBWYC4Q5JSIlFJK5VlB kvkS4AagPvAXMNQpERWB+Ph4V4dwBY0p94pjXBpT7mhMhacgyXwpYHM8Xg+UL3g4RaM4/vE0ptwr jnFpTLmjMRUeZ/WZ9wEWOmlbSiml8sjzOq8vBSJzWD4M+Mnx+BUgHfjWiXEppZTKA0MB138EeAJo B6Repcw+oGoB61FKqdJmPxBbFBXdDuwEwoqiMqWUUldXkJb5XsAbOON4vg54qsARKaWUUkoppZzP CGzm35OlxUEwMBv7BU+7gBauDQewj9HfCWzHfiLZxwUxTAVOOmK4JAT7SfC/sF9XEFwMYnL1xWo5 xXTJ89iH64YUaUR2V4trIPbjtQMYWwxiagZswJ4XfgeaFnFMFYAV2D9vO4BBjuWufK9fLSZXv9cv 8xzwDfCjK4P4j+nYh1KCfTSPq69cjQEO8G8C/x542AVxtAEacvkH7x1giOPxS8DbxSCmDvw7pPbt YhIT2D+QPwMHcU0yzymuttgTlJfjeXgxiCkeuM3x+A7sSawoRQINHI/9gT1ALVz7Xr9aTK5+r2cp DyzD/oYqLi3zIOyJszgJwf7HK4P9y+UnoL2LYonh8g/en0CE43Gk43lRiyHnVjBAV+DrogslSwxX xjQLqIfrkjlcGddM4BbXhPL/7dw9aNRwHMbx70ELWs5JEHXQdOkmWungUKhIhwpCN1/xdXCtDoq4 6JOMo4QAAAJ8SURBVOSqiy5WRB06CYcKIoib4KJXKIiDWGuLSkHEt0EcdHiSJr3rIUWbX4bnA6FJ lj70fpf8X7sgYXGmCWBven6AmM+vqIG+b1Wo9UwDrRAsiqp1QMXdDwxRnYf5NrRb9SbwArgO9IQm kpPAN2AeuBOYI2HxF+9z4bzWcl2WhM4P8/vAwfKiLEhYnGkUuJyeV+lh3gQuAs9Qi3ig9ETtmTYD s8A7YA71aKIkwAywhmrUOuSZ6i33/1rrK/VfE/egB1OTf1/L/j91AduBa+nPH8C50ERag38KfYgb 0Yd4KDJQB7/ToyqqslmtB22iu1C4V5Wa70I9vh3AGdRSj3YDjQlvAk6jcfUIdeAuMIYaUkVRtV5H 83ljwPfC/dBav4TevtPAB/TQvB0RpMV6lCkzCDwIypLZB4wXrg8DV4OyJLQPs2Q7gDdQnWGWY8BT YFXZYVIJeaYtaJJvOj1+AW+BdcG5AB6innHmNbC2zEC0Z/paOK8BX0pNI93AI9SIykTX+lKZYBm1 vlIt8/Oo+9QL7AeeAEdW6Hctx0f0kulLr4fRDHKkV6jltBoV9zBaZVMF98gnY4+isbxoI6iVOUrn XcdlmkJjrb3pMYd6ffORoVIN8jHzPrQv5FNcHEAvlOwFswutHilTDfUOXgJXCvcja71TpqrVOkNU azXLVrQkqhLLfVJnyZcm3iJffVCmCeA96s7NAsfR2O9j4pYmtmY6gTarzaAhvCYaMovI9JP871T0 hpgx86VydaM5mCngObAzKFOxpgbQvNUk2mjYX3KmQbR8dJK8hkaIrfWlMu0mvtbNzMzMzMzMzMzM zMzMzMzMzMzMzMzMzMzMLNIf1QicDABfA2sAAAAASUVORK5CYII= \"></div>"
]
}
},
"selectedType": "Results",
"pluginName": "IPython",
"shellId": "
0CC47EED5B9E4D0B85D5B99C9E4DB0E
4",
"elapsedTime":
562
,
"height": 3
27
"shellId": "
DD17159096204C748D91BB5FF801966
4",
"elapsedTime":
301
,
"height": 3
99
},
"evaluatorReader": true,
"lineCount": 1
},
{
"id": "markdown
gIqE5w
",
"id": "markdown
M0Tj1i
",
"type": "markdown",
"body": [
"Having kept reference we can get extra features of the data whe have."
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment