-
ankit kariryaa authoredankit kariryaa authored
query_example_v1_1.bkr 85.26 KiB
{
"beaker": "2",
"evaluators": [
{
"name": "HTML",
"plugin": "HTML",
"view": {
"cm": {
"mode": "htmlmixed"
}
}
},
{
"name": "JavaScript",
"plugin": "JavaScript",
"view": {
"cm": {
"mode": "javascript",
"background": "#FFE0F0"
}
},
"languageVersion": "ES2015"
},
{
"name": "IPython",
"plugin": "IPython",
"setup": "%matplotlib inline\nimport numpy\nimport matplotlib\nfrom matplotlib import pylab, mlab, pyplot\nnp = numpy\nplt = pyplot\nfrom IPython.display import display\nfrom IPython.core.pylabtools import figsize, getfigs\nfrom pylab import *\nfrom numpy import *\n",
"view": {
"cm": {
"mode": "python"
}
}
}
],
"cells": [
{
"id": "markdownT9rKmh",
"type": "markdown",
"body": [
"Warning: running the first cell of this notebook can take a long time(hours).",
"",
"One can run safely the second and third cell, that will analyze a precomputed result of the first cell (queryMgO.out).",
"",
"A more documented version of this notebook will be uploaded soon."
],
"evaluatorReader": false
},
{
"id": "sectionQ3dZWh",
"type": "section",
"title": "Query Example",
"level": 1,
"evaluatorReader": false,
"collapsed": false
},
{
"id": "markdownKIKNEj",
"type": "markdown",
"body": [
"*Warning*: running the first cell of this notebook can take a long time(hours), we are working to integrate the (much faster) flink query.",
"",
"One can run safely the second and third cell, that will analyze a precomputed result of the first cell (queryMgO.out).",
"",
"A more documented version of this notebook will be uploaded soon."
],
"evaluatorReader": false
},
{
"id": "sectionzKgCDS",
"type": "section",
"title": "Scan the whole NOMAD Archive",
"level": 2,
"evaluatorReader": false,
"collapsed": false
},
{
"id": "codecJWYiO",
"type": "code",
"evaluator": "IPython",
"input": {
"body": [
"from nomad_structure_tools import query",
"percentageOfArchives = 5",
"",
"def hasMgO(stats):",
" els = set(stats.get(\"elements\",{}).keys())",
" return stats and \"Mg\" in els and \"O\" in els and ((stats.get(\"nEigenvalues\", 0) > 0) or stats.get(\"nBands\", 0) > 0)",
"",
"def getVolumeAndGap(calc):",
" data = calc.json()",
" if not data:",
" print(calc,\"has no json\")",
" return None",
" gaps = []",
" volumes = {}",
" for sectionName1, section1 in data.get('sections', {}).items():",
" if sectionName1.startswith('section_run-'):",
" for sectionName2, section2 in section1.get('sections', {}).items():",
" if sectionName2.startswith('section_single_configuration_calculation-'):",
" gaps.append(gap.gapOfSingleConf(section2))",
" elif sectionName2.startswith('section_system-'):",
" cell = section2.get('simulation_cell')",
" atomLabels = section2.get('atom_labels')",
" atomPos = section2.get('atom_positions')",
" if atomLabels and cell:",
" hasMg = any(map(lambda x: stats.toSymbol(x) == 'Mg', atomLabels))",
" hasO = any(map(lambda x: stats.toSymbol(x) == 'O', atomLabels))",
" nAtoms = len(atomLabels)",
" if hasMg and hasO:",
" volume = abs(np.linalg.det(np.asarray(cell)))",
" volumes[section2['gIndex']] = volume/nAtoms",
" newGaps=[]",
" for g in gaps:",
" systemGIndex = g.get('systemGIndex')",
" if systemGIndex is not None:",
" vol = volumes.get(systemGIndex)",
" if vol:",
" g['volumePerAtom'] = vol",
" newGaps.append(g)",
" if newGaps:",
" return {\"calculationGid\": calc.gid, \"gaps\": newGaps }",
" else:",
" return None",
"",
"def methodToFile(outPath, archiveGroupIndexRange = query.archiveSplit(percentageOfArchives,101), calculationGroupIndexRange = query.calculationSplit(0,1)):",
" \"\"\"perform query, stores result to file\"\"\"",
" with open(outPath, \"w\", encoding=\"utf-8\") as outF:",
" nomadArch.queryCalcs(",
" statsFiltering = hasMgO,",
" calculationOp = getVolumeAndGap,",
" reduceOp = None,",
" f0 = outF,",
" closeOp = None,",
" archiveGroupIndexRange = archiveGroupIndexRange,",
" calculationGroupIndexRange = calculationGroupIndexRange,",
" parserFilter = None)",
"",
"methodToFile(\"/home/beaker/notebooks/data/querMg0.out\")",
""
]
},
"output": {
"state": {}
},
"evaluatorReader": true,
"lineCount": 58
},
{
"id": "sectionLNKIwc",
"type": "section",
"title": "Put data in a table",
"level": 2,
"evaluatorReader": false,
"collapsed": false
},
{
"id": "markdownqcviza",
"type": "markdown",
"body": [
"Organize results in a table, convert units (from SI)"
],
"evaluatorReader": false
},
{
"id": "codeCSQ8CP",
"type": "code",
"evaluator": "IPython",
"input": {
"body": [
"import json",
"import pandas as pd",
"#from nomadcore.unit_conversion.unit_conversion import convert_unit_function",
"def convert_unit_function(sourceUnits, targetUnits):",
" if sourceUnits == \"m^3\":",
" return lambda x: x*1.0e30",
" else:",
" return lambda x: x*6.242e+18",
"",
"with open(\"/home/beaker/notebooks/data/queryMgO.out\") as f:",
" d=json.load(f)",
"volumePerAtom=[]",
"calculationGid=[]",
"singleConfCalcGIndex=[]",
"gapAtGamma=[]",
"for v in d:",
" cId=v[\"calculationGid\"]",
" for el in v[\"gaps\"]:",
" gap=el.get(\"gapAtGamma\")",
" if gap:",
" volumePerAtom.append(el[\"volumePerAtom\"])",
" calculationGid.append(cId)",
" gapAtGamma.append(gap)",
" singleConfCalcGIndex.append(el[\"singleConfCalcGIndex\"])",
"df = pd.DataFrame({",
" \"volumePerAtom\": map(convert_unit_function(\"m^3\",\"angstrom^3\"),volumePerAtom),",
" \"calculationGid\": calculationGid,",
" \"singleConfCalcGIndex\":singleConfCalcGIndex,",
" \"gapAtGamma\":map(convert_unit_function(\"J\",\"eV\"),gapAtGamma)",
" })",
"df"
]
},
"output": {
"state": {
"datatablestate": {
"pagination": {
"use": true,
"rowsToDisplay": 25,
"fixLeft": 0,
"fixRight": 0
},
"columnNames": [
"calculationGid",
"gapAtGamma",
"singleConfCalcGIndex",
"volumePerAtom"
],
"actualtype": [
0,
"4.4",
2,
"4.4"
],
"actualalign": [
"L",
"R",
"R",
"R"
],
"colorder": [
0,
1,
2,
3,
4
],
"getCellSho": [
true,
true,
true,
true
],
"barsOnColumn": {},
"heatmapOnColumn": {},
"tableFilter": "",
"showFilter": false,
"columnSearchActive": false,
"columnFilter": [],
"columnWidth": []
}
},
"result": {
"columnNames": [
"Index",
"calculationGid",
"gapAtGamma",
"singleConfCalcGIndex",
"volumePerAtom"
],
"subtype": "TableDisplay",
"values": [
[
0,
"Pum1Gw6M0I-XY27eZ361mF3Og33Ls",
3.5723807314318754,
4,
10.669097153967916
],
[
1,
"PeXkmDvw1ryqkJw3f-9RIaS5h-IUZ",
3.5726807550088826,
4,
10.668897136382887
],
[
2,
"PpKa_jkQaEzsNGtWH9NsQQqPj1XEf",
3.4773732653794043,
0,
10.669097860428517
],
[
3,
"Pw5q80AyZsDnvRR2XIm3sbQxtARmO",
3.5281772577527257,
26,
10.812633398096658
],
[
4,
"P5rAKxyOryckkSO9Mz9P9e0vMYKRs",
3.477873304674417,
0,
10.668897556127115
],
[
5,
"Pskq-lvlnBdLinUF5X_HI35n3sjhS",
3.528477281329733,
26,
10.814984465235764
],
[
6,
"PMPKlIlfBFQgh7GqP50cIu2Mr11pX",
5.714649079126569,
4,
9.0983104851155
],
[
7,
"Pxw9VFrViNA06POt51W_QwqzgCXMm",
8.744287159751332,
59,
6.464116932201225
],
[
8,
"P2tG-Zpu-4Y1C73zWM8vOpkIjMbv0",
5.430826775277191,
0,
9.437173638876379
],
[
9,
"PD5Z0KXSzqQhZamMclJUTY8BJsU7Z",
5.69344741301802,
0,
9.098311176385998
],
[
10,
"PdIjoF-bt1wuVzPzNG_KP36a-8x5K",
3.905506909769535,
0,
10.628302791256772
],
[
11,
"PhlUe1bYGJ_7290uAUUbyLBCV_w9P",
3.90490686261552,
2,
10.628301957337763
],
[
12,
"P7FbfWoHB9S79SYhjpJWuBLT2YDF6",
4.246733724686406,
0,
10.510064122830263
],
[
13,
"PS-LapMKB-9QWR4OzTtBZqzOCsBEp",
5.158605383072114,
0,
8.55806595470939
],
[
14,
"Plt8aehRKEiYBf3sm2d3RSE_hQTJn",
3.7955982727256776,
12,
11.77601752956493
],
[
15,
"PGeHdwDvqwouKjHcSZz075FjJDiAQ",
4.288236986172485,
0,
10.34824311498097
],
[
16,
"Pcsyf2ofOmW9VWY91ot3c0EEH_XAW",
4.244333536070344,
4,
10.510066786089395
],
[
17,
"P-Vk81eS5lFTtEIVb2QJ_RCxRB3uG",
5.187207630746855,
4,
8.558065279397127
],
[
18,
"PXsQ4yo09MbNBXQVyqsM6IfsHpRGf",
3.990113558485735,
0,
10.4660287642818
],
[
19,
"P03FFhdUR5vkAb96ThKoDVrlafdG9",
0.03580281352293076,
0,
11.776016140489089
],
[
20,
"PVsYDkZqyDHpDwmrP71O0pQuS8mc9",
5.434527066060288,
0,
8.357625418831807
],
[
21,
"PlIhH0Y_3jCtmnqV-3JBjeHLWtaug",
6.394202481049236,
18,
8.206836525290566
],
[
22,
"PaMCKbapuodNOlsoTuNVnjvJRH6OJ",
5.435727160368319,
2,
9.437174012415559
],
[
23,
"POTVgJoFDkR-gnN6ig0vHhji1xuLq",
4.852881358101164,
26,
10.286068287119491
],
[
24,
"PTWczpMwiwl_G9vCyzP6HcJWWA6X8",
5.522433974123572,
0,
8.382567676960509
],
[
25,
"P-sgCsNtGMKv3zNrYBtNq5pSidEfK",
5.2582132106387025,
6,
8.593543823229208
],
[
26,
"PMkksic6a0O6GpanS61_WIcQuKv0A",
3.03563855216492,
15,
12.107584942228591
],
[
27,
"PCQhJw3VtB48VYaWfwFEXR7ZcD6xv",
4.834079880608676,
0,
10.286067635289657
],
[
28,
"PW-eYaIMigW1519FGffse3l3xghdD",
3.0225375226355795,
0,
12.107585358168555
],
[
29,
"PzaUcRnkMYOv-XEyqsLTfPnZcCF5R",
5.25581302202264,
0,
8.593545457077738
],
[
30,
"PN3dZ8IdhMK2BXVpb3jmPdpUsjUPA",
3.0054361787461357,
2,
10.674339323287906
],
[
31,
"PeGa7OE3ocfNHGvuB9ukClLAsB07_",
0.7761609937191789,
4,
11.012370193611627
],
[
32,
"P-mLGjDk--rXHOAq2ebRq2YtZD8qQ",
2.2935802383656285,
3,
12.252357455267548
],
[
33,
"PSzkCPVY30po_IKQG2N4cLiQwU2Cb",
2.999235691487974,
2,
10.690585111778612
],
[
34,
"P7qTVsgICMZq2MdlEr2HXm3fi8a_k",
2.113766107878954,
0,
11.181730695793195
],
[
35,
"P99S6QlD8u2Acy2ZGo_nMe1C7RMGK",
3.7248927164108405,
0,
16.74132941392552
],
[
36,
"PssP15XY8x9xbZZguxZAo7xsxzqFv",
7.622999044614181,
2,
11.586125003019424
],
[
37,
"PRF4R2FKvKtgMF4GkcT81lSAkQSnL",
3.1596482973281446,
2,
11.727137615588267
],
[
38,
"PkeQYbzoh1KTrCiniY-SwDT8tImcJ",
2.136867923308554,
2,
11.18173008169867
],
[
39,
"PQbt3s1AJrwxfxgAHnYLSWy-kQmVx",
12.207759332729378,
5,
11.330406188878966
],
[
40,
"PfiHANo0AiS1Y3k6axyNT_Qg6Mvp0",
3.588682012449299,
0,
9.757313887849342
],
[
41,
"P0YPG5Qtu-YIe7WMv0QcaZSeuFQEp",
3.197051236595117,
2,
11.42247876865802
],
[
42,
"Pj4vceX-zRu2oq7pVxHLj4lr6r8Ff",
5.709148646881427,
4,
12.825053992668336
],
[
43,
"PDj06dFQ6Q2qPWoGFUKUtPIveMfxl",
1.7286358428599407,
0,
10.566073512272744
],
[
44,
"PkkfkcUWDNknXmIQPZOams5TjEkoY",
7.864518024105463,
0,
11.244661495941914
],
[
45,
"PWdwsk5BfBKYZGpGQwrvVcldXiY5f",
2.75101618544352,
3,
10.594108429358492
],
[
46,
"PkpobuiWJp_oeaeovm4DcQ2QqGkIj",
1.6662309388423184,
0,
14.589886956541308
],
[
47,
"PP0tPrVa4_FE4VnAlxTvwArG5Z3FR",
3.1803499241416815,
0,
11.422478857640671
],
[
48,
"PS9-yPEP14ZYh8GyG2q-8A5egKcPn",
3.364664408283475,
5,
10.02966405761103
],
[
49,
"P27h19Av37xN3RcS3QylsLzxC78uB",
5.504832590939115,
2,
18.082105090347795
],
[
50,
"PzjTjAg1VdTTCdUIow3IWBaQDqVoT",
3.1288458767553435,
3,
12.105506104227311
],
[
51,
"ProuAlq5b36MiH9rmAF8MTCg-kQO9",
12.790205103560522,
2,
10.844322183872189
],
[
52,
"P0Nj-WcMjujpYtjcK3I8X8iBaTKSV",
1.4975176807049322,
0,
19.21591791338176
],
[
53,
"PWgHH_4Nhmgi0wx5mParoRnuSb37_",
2.7818186060163215,
4,
10.318313759736892
],
[
54,
"PWpvaaWAws_Q-HBmuj-k7VbLTUFao",
1.4327125880712477,
2,
13.73312769104289
],
[
55,
"P-beHCJtTujTsQds5OTl15_EyNUml",
0.7425583530943057,
2,
11.02872508060834
],
[
56,
"P_0n2Qz84GD0BUFEXTuPLL8A5MRKa",
9.452542817207746,
3,
11.37816558388737
],
[
57,
"PC3xdTgioeAPig_3rSuQxMa-p_GJp",
7.944824334884548,
2,
11.101989917648787
],
[
58,
"PUok10csAe4px6thyRLhJtClL83yT",
0.9222724757219779,
2,
10.83410795212242
],
[
59,
"POgDYnlvyA0TE3tnVtL_S4wsTaZHc",
5.562037086288602,
0,
17.53724145525034
],
[
60,
"Py-P8iwMhgOZlrzoB8-OKHPvL2uiK",
5.550436174644301,
2,
19.215922570390845
],
[
61,
"Pjfr8NF9AMVwjtFQI_WbK6r61oqqZ",
2.063362146941643,
3,
11.426880499641953
],
[
62,
"Pj6ns5HKd7igEBnRqnBdEof6sKqBq",
3.5290773284837487,
2,
9.757310122696676
],
[
63,
"P_VJooj5TybChRQLNbgwVPCo59vxT",
2.902228068255453,
14,
11.162871758713937
],
[
64,
"PRg36kwg_SJh5drILyf9K9TO3tBCs",
2.9465315497936033,
2,
10.040782175810637
],
[
65,
"P8FEVwuCMZpn0g572isUIjKVdgB9X",
5.755152262022622,
2,
12.378853978760201
],
[
66,
"P-wLa0zDjkjL2xSZJ6yy1wKEg35Q9",
3.364664408283475,
5,
10.02966405761103
],
[
67,
"PwSdRrzEIhadvMFygUpYJNhCmWSYD",
8.231646874504007,
0,
12.140340097354212
],
[
68,
"P8rY0EkwoJ71PvwjxH_6N13XguKtX",
3.5290773284837487,
2,
9.757310042587136
],
[
69,
"Pqo4rB_Cuvsj1sId91gCLg-E9f7tS",
0.6989549265691715,
0,
15.417926669821176
],
[
70,
"P-7dcB-XZhY3AcR87AvVYW7WchS3d",
5.529134500676747,
2,
19.736652466570042
],
[
71,
"PwDnKavJ7ce-hSTURbNQqX_SNDIPp",
5.717549307037644,
2,
15.417922213952288
],
[
72,
"PKvYKugCyD7a4TCGJkELkdXlIyW49",
3.2827579717603457,
0,
11.843524463448723
],
[
73,
"PPk6Ii5Fzf9xQIAJXCUWHlQ_xYlZl",
0.14151112048867923,
2,
14.589884337719983
],
[
74,
"PdeOXpzYLwBGl5ElMQe9jZmfy8qtj",
3.0893427724493168,
2,
10.765920003691463
],
[
75,
"PBVtgIr_89Rlj6KAM8wAgxttpG70i",
1.2975019626997326,
0,
10.844324848447078
],
[
76,
"PQJmE5xjqSXRDHhkSm5WsXUQjpKNq",
3.089742803885327,
0,
10.765918207367713
],
[
77,
"P1066vmdJUUj19JbfAR8rVFv7lkir",
3.2637564785498507,
2,
11.843526742348825
],
[
78,
"P34O7ljuPK-l6KY6L8MsAUHilAeQ6",
3.7103915768554625,
2,
16.741333432382355
],
[
79,
"Pg5PBeGwYRmHwU_Yk-prIseCIwEjw",
1.6007257911956156,
2,
15.010287856726663
],
[
80,
"PBZFa11uTyDonwJPi6XWfYF8x2cLO",
1.3904092637131478,
0,
13.733127187989279
],
[
81,
"PyWGmn-EUkd9IKrI5iDtkZSjlwBib",
7.8629178983614185,
2,
11.24466510626505
],
[
82,
"PX0EYPVJPg49ynSRznEwwlkWJyZ4-",
7.942724169845494,
0,
11.101992187714846
],
[
83,
"Pf-XGYyerR4Y2n5eLayL14z3w0Rlb",
0.9637757372080562,
2,
10.566076637935545
],
[
84,
"PERl58jY1-HoL_gF7_oahqq7sBm0D",
5.712048874792502,
2,
15.932682829148266
],
[
85,
"P0dPN3fSVtue50UicJvYpJ_dC2mvE",
0.7434584238253299,
0,
11.028726036790834
],
[
86,
"PwoDGQ0XEWWHuoBIe7WgISV1KZhlu",
7.9343235096892775,
4,
12.655788713363918
],
[
87,
"PJl2Q2N6I98QEIFVJH5Uu4HjcVg9n",
5.37962275146786,
2,
17.53723813938584
],
[
88,
"P_qGUs6g_0hIt4SsD7p8ZnGAZEKQU",
2.949331769845677,
0,
10.244434430227377
],
[
89,
"Pz2ltocmaVDNIYdqeknYF5Cdi6tcG",
8.24954828126547,
2,
12.140343711589871
],
[
90,
"PNnVFRnwlu66AXcPBNbZakEJpPlgP",
2.9408311018304554,
0,
10.04078380888617
],
[
91,
"PKu8TeoXe-HRfEmrd8JU7A19DdUmx",
2.9643329486960672,
2,
10.244430954552524
],
[
92,
"P2qEVtwuH3isb4p7Ku8k2gTlaeYz5",
3.586781863128249,
4,
17.07993345277657
],
[
93,
"Pfwcpo09dT0g1elxLQZYEUw2b0nXb",
0.6048475312477248,
4,
14.384256485325988
],
[
94,
"PbWYD7H93JSuihbfPK7HMgA_F94ql",
3.278057602387224,
0,
11.739063837994031
],
[
95,
"PfSGkS5FQObfwGHunOPYfeJ6_D6iX",
3.560079764774555,
0,
11.098908462775405
],
[
96,
"PcysINvYCrykYiTbVpvG9UgD3FmZI",
4.514854794672377,
2,
9.267927894528343
],
[
97,
"PkkpqqBkcVTlMABLAA1ztIf7thhGC",
4.513454684646341,
0,
9.267925697514247
],
[
98,
"PAE9r4q4p0eDJKv8p6Z9ZmpUbrD-e",
3.2871583175564596,
14,
11.739064168497704
],
[
99,
"PAPVEouKrAhZ-xXky7tt9eKnWcS8P",
0.20971648032845253,
0,
19.76718305727469
],
[
100,
"Ps0xO5jHWPy_s7n1l_gNO5y3w8W-r",
0.4794376760584646,
55,
19.767179767235344
],
[
101,
"Pk1MtGnBJCUnrmvh_8BGzaRheYfEY",
2.4373915396113675,
2,
10.91583327195439
],
[
102,
"PD1c1mWVB_u1q9xt_R48nK9Pa64yu",
2.4423919325614976,
2,
10.898102021286604
],
[
103,
"P74EPBJaLUzmsFQ9uxleXvCbxDB50",
3.385366035097012,
0,
12.343630787026445
],
[
104,
"Pw5wmIq6iziRtk4ri-AlWPr0O-YX_",
3.3828658386219477,
2,
12.343630787026445
],
[
105,
"P3j6dXQdFgRGGQZD8UReEEmZyDTay",
4.853381397396179,
0,
13.473532544198548
],
[
106,
"PyYfJ9VP_CKGfs3Qx8t1yAhdc6JBI",
4.8949846667412595,
15,
13.84622981501514
],
[
107,
"PI-3CaFjoBju3WSGLMh6Y10nsBlEG",
4.8572817038972795,
6,
13.473531798165315
],
[
108,
"Pw_SMWGh9jfK2U8I-bOlDfCwwrzhY",
5.403624637628484,
40,
10.525664939953344
],
[
109,
"PuDd8UN0WI37mfaUp1nYj110i1rCo",
5.363621494027443,
0,
10.52566456170458
],
[
110,
"PPcBZqfflTUWdEinjMAzi7rBNThQD",
4.100022195529592,
25,
16.354457816073683
],
[
111,
"PmJtqpMK6GQw-SvrAm1GuigwveRkm",
4.381944350057923,
4,
8.976940226255156
],
[
112,
"PVQ30QFg8Gy46eRVj78wpeU3yO_aN",
4.147825952132836,
2,
16.117299259368906
],
[
113,
"PbxjceQXLtKdg-WkWw0rx4-OhippK",
4.381144287185901,
0,
8.976940285780845
],
[
114,
"PYfpHhNr-pnRiODCAdkKqqE6zbpoY",
4.176628215525584,
43,
9.010336578810442
],
[
115,
"PjjlRWnwSyqtwWj7G7MhiBfyMaNXh",
0.339526681313827,
0,
16.117301896997446
],
[
116,
"PjSb9Thbroymfzg431HxH3Qk-BFMr",
4.403546047602484,
2,
14.171604119228135
],
[
117,
"PimSyB8d4VKmJBnV1sUazOzazRNNk",
0.00020001571800520648,
0,
12.396077250788865
],
[
118,
"PfS-pJD20WdKs2AWrgiA-LEsAzrIn",
4.247233763981419,
8,
14.676980932653027
],
[
119,
"Pkjlp7r2wFstd0XgXQLLyp5ga6WsV",
5.235111395209102,
2,
12.396077307126932
],
[
120,
"Pfx8LEM0WFLjRkh_yxvniKtUvgdAX",
4.407646369821589,
0,
14.17160160912241
],
[
121,
"PSxc8cyV2QBIMmpyZFirVNUO1RqZK",
5.02579494631666,
6,
12.821641193899168
],
[
122,
"P6qZJwLWCLsPBVEjDs3feUfe0W_Dz",
5.744751444686353,
59,
11.02189977237154
],
[
123,
"PADWIfF15KD5zw76GoEdGHyHx-nNx",
3.3884662787260935,
18,
13.720843238502725
],
[
124,
"Piz9k5aKgOpOTH64ft_7leRifPihG",
5.8129568045261255,
10,
10.852129571515158
],
[
125,
"PdHRLdvVyFRBUj2uARbHKht_ZLYA1",
3.383865917211973,
0,
13.720843029683637
],
[
126,
"PgQDOVZGBFZHjZdQw8asItR2bgwl4",
5.80545621510093,
0,
10.852130251708171
],
[
127,
"PkMqhzrXSqGg_uknc0GZ_K0HlMtsD",
5.75965261567774,
2,
15.705054047489348
],
[
128,
"PjTaklBhmZ5N749kePBNIn2eINjzQ",
5.868861197708577,
7,
16.61051757409325
],
[
129,
"PVq75KeZbA7yGOM9P3kjb229tiqgs",
3.219152973434691,
3,
10.816481983684753
],
[
130,
"P1n56kWPXAlBiwhmCaZBHBKciV23F",
3.302359512124854,
0,
9.77133177118094
],
[
131,
"PF38TV2qFcaRDtKmRoVjnP9hkRWpe",
3.325561335413458,
2,
9.77133104950393
],
[
132,
"P50-6-z-7BHumeF7yPXvdFhRnbmuy",
1.8497453601120892,
2,
13.073595959087672
],
[
133,
"PUWIJ0tkr36vJngxn_RDHLkhVhbu3",
8.42026169658291,
2,
13.713333901184505
],
[
134,
"PK7SKacTWO24yofdlnumAcUq-MHyN",
5.279214861029249,
2,
18.082199968815747
],
[
135,
"PpYkHqGE17WdpoBlimcOaWaZbd_Q0",
5.350120433062092,
4,
11.616151297503349
],
[
136,
"Po4L-rtT2vwqQd3B1ZtiPFTh_XcpW",
3.4953746799998724,
2,
10.823250981188883
],
[
137,
"PhZ_-NitPYynJe2PBE4X_MFpX-_6m",
9.899777962667374,
3,
11.178526392868099
],
[
138,
"PIw6nCxNsfJG_Z2lg5IxND1Uo7lYy",
0.7704605457560302,
0,
15.597341969197979
],
[
139,
"P96V_EmWXSopAWThs_sKcnm2bXX5S",
2.0211588304425456,
0,
12.762098271584847
],
[
140,
"Pf6BRGm0fAukiEbT4c3JSGRPojkmC",
0.7828615202723527,
0,
15.198755732362699
],
[
141,
"PI3pOwEEc1BmPk8b0ZczxdxFJhMw1",
2.574402306444929,
7,
10.158309526981258
],
[
142,
"Pu9l2Vz_JJU4wAfLGR6CyLYf3hYjY",
3.0889427410133066,
2,
17.51815172887881
],
[
143,
"Pl_GppEIrvNmjeIPGXz63jzCpmFcU",
3.4874740591386684,
0,
10.823253985681726
],
[
144,
"PJjPS9a505P8JXYWKcnKz-6D-4gHK",
3.1556479829680413,
0,
11.701202254754783
],
[
145,
"P-xoZ6ZtlJl8Qbz4I6EN9J84V_PkO",
7.786611901942435,
0,
13.338608463523556
],
[
146,
"PqD8-nwcpsM6nTIjiaEkHmowH4QRr",
2.031159616342806,
2,
12.762098942257703
],
[
147,
"PieLuN68pz8TDBlM7OMnAzgWlrwzz",
9.570652098689818,
4,
11.609408365873858
],
[
148,
"PtkZAoxTvcKDcgZnQWkOmpTW4fshU",
9.889777176767115,
0,
11.178528936488576
],
[
149,
"P8_E-71BNvBp_tocu6uakH5O2T8s9",
7.7875119726734585,
6,
13.33860856219804
],
[
150,
"PWoWX8nPdbQ8lbyYpjkdLc_iqhUzc",
3.29295877337861,
2,
16.56849722602348
],
[
151,
"Poe6f9-xf5GEpEUnB50MulhWtvQr-",
3.0938431261044332,
0,
17.518146640354413
],
[
152,
"P6oGoYOB1h6WjpPq1AsiCnXqiNB-g",
5.457628881489888,
0,
18.082199001899834
],
[
153,
"PPLOl0yidivaF7nt_qoqTRNu2G6hd",
6.964347285223059,
4,
13.692745072453024
],
[
154,
"PiFKxCwp5Fv20lU3z50GFLiVRNXyt",
5.77775403815721,
2,
11.400219843971218
],
[
155,
"PW-qqgEEH173QBpC8cWfI9PcDMC1l",
1.288301239671493,
2,
10.909884473701927
],
[
156,
"Pl6MDBTc7u7cQ-mDuycQXZ8YPIuFi",
3.1315460889484137,
2,
12.033311707222484
],
[
157,
"P26dTMEmZ90YgXuOMg5T66ambNMzU",
6.968747631019174,
2,
12.165956331977029
],
[
158,
"PHqcQqOfQVg68NKvx9nEcT2QfHKfj",
2.9177292864008546,
6,
18.138647696766096
],
[
159,
"PZieTU0A_nxUBoaCuNG5Vk3FmY2lY",
7.385080348046997,
2,
12.984619092896581
],
[
160,
"PVXXaQTYtkfGMTFK2y6ZtS5fL9rRC",
5.379822767185864,
2,
18.62524061892397
],
[
161,
"PH0MiMikAasI_awuQHVDAQXqC7KuS",
1.6195272686881041,
5,
10.538439243820028
],
[
162,
"P16Jrf0Sjk_MDZut9SWfaYSeHQkrW",
5.553336402555374,
3,
11.747683224639898
],
[
163,
"PWMLGKxIRj2618s7pf73OJJb7zBQh",
1.4996178457439873,
0,
12.1659542903109
],
[
164,
"PTN1ddHEbEPfNz7a9ALa8ysXdSGDx",
3.3138604159101543,
0,
16.25344977045602
],
[
165,
"PVsy_22GMEvZqkx0M8fh4OorfS-cm",
2.292280136198595,
2,
11.106789528694447
],
[
166,
"PwnEFa8f0QwQC0E88tOqKC7QjZ3Yi",
5.620841707382131,
2,
16.1285380911441
],
[
167,
"PZVkJWGGn_LHhtLho9-o3ChquJkV0",
3.3562637481272564,
3,
16.253449095027335
],
[
168,
"Px1j4i9zvo3VAejQoRF8_y2dkYjRp",
2.1986727801721613,
4,
11.613497106023274
],
[
169,
"PuM_9jQR0HuHQ21SqrLooeGnnKlzX",
6.722728297872775,
2,
12.465930261307983
],
[
170,
"PCMHQP6W0qZDXaG7cx3D9xcCdQXyC",
5.7300502894129695,
2,
15.198760038256506
],
[
171,
"PZj5_o1NSTHu9U7FhsSEW5fr3o56s",
3.81800003314226,
2,
16.22125107874852
],
[
172,
"P3mt49raXO9KO2oqik8ZEDWqRAS0k",
3.1697490910874078,
2,
11.701203068572902
],
[
173,
"PS5tSMkDC-OAmztVilo0s5QAKnLdG",
5.620641691664126,
2,
11.219868369171328
],
[
174,
"PTXacCPPVnKVsoee7RFaYgLjNUnYB",
2.2822793502983347,
0,
11.106786209949892
],
[
175,
"Pfr50QdWDzH4Y5xmJUT7sVhFby6BT",
5.778654108888235,
0,
11.400220999241117
],
[
176,
"Pz0z8lVzRcM6eMUwYiPeEg2196k0o",
5.606940614980769,
3,
11.245104426725591
],
[
177,
"Pq6J62ERpQfjRM-WFcAf0LjC5s7r_",
7.4762875154573685,
2,
12.830276223767695
],
[
178,
"PlW38dAeF96VoAXA62nlRvJVh_bZM",
3.458171756450905,
2,
11.131615796456039
],
[
179,
"PxfrkMsuTVWP3iJIYF0AJu_rJUYa3",
5.5747380843819325,
2,
15.597339340688642
]
],
"hasIndex": "true",
"type": "TableDisplay",
"types": [
"integer",
"string",
"double",
"integer",
"double"
]
},
"selectedType": "Table",
"pluginName": "IPython",
"shellId": "DD17159096204C748D91BB5FF8019664",
"elapsedTime": 346,
"height": 776
},
"evaluatorReader": true,
"lineCount": 31
},
{
"id": "sectionbRaG6F",
"type": "section",
"title": "Plot results",
"level": 2,
"evaluatorReader": false,
"collapsed": false
},
{
"id": "codegThSLq",
"type": "code",
"evaluator": "IPython",
"input": {
"body": [
"plt.scatter(df.get(\"volumePerAtom\"),df.get(\"gapAtGamma\"))"
]
},
"output": {
"state": {},
"result": {
"type": "Results",
"outputdata": [
{
"type": "err",
"value": "/usr/lib/pymodules/python2.7/matplotlib/collections.py:548: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison\n if self._edgecolors == 'face':\n"
}
],
"payload": {
"type": "OutputContainer",
"psubtype": "OutputContainer",
"items": [
"<div class=\"output_subarea output_text\"><pre><matplotlib.collections.PathCollection at 0x7f2101fa7ed0></pre></div>",
"<div class=\"output_subarea output_png\"><img src=\" AAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd8U9X7wPFPmq6kkw5aWkaBMmXvIVoEHCAKqKAoqKgI CogLBZGhoqLg1wEqoCAulPUTZciSAgKCIBtEpqwCld2mI22e3x8JtUiBjrRp0+f9evEiuTn3nufe Jk9Ozj33HlBKKaWUUkoppZRSSimllFJKKaWUUkoppZQqclOBk8D2HF57HrABIUUakVJKqSweuSw3 Dbg9h+UVgA7A306LSCmlVKGK4cqW+SygHnAQbZkrpZTL5LZlnpO7gaPANifFopRSKp8887meGRiG vYvlEkPBw1FKKZUf+U3mVbF3u2x1PC8PbAKaAacuK1i1quzfvz+/8SmlVGm1H4jNbeH8drNsByKA yo5/R4FG/CeRA+zfvx8RKVb/Ro4c6fIYNCb3iktj0pic/Q97oznXcpvMZwBrgerAEeDR/7wuealU KaWUc+W2m+WB67xepaCBKKWUyr+CjGYpseLi4lwdwhU0ptwrjnFpTLmjMRWeohiBIo7+H6WUUrlk MBggDzm6VLbMlVLK3WgyV0opN6DJXCml3IAmc6WUcgOazJVSyg1oMldKKTegyVwppdyAJnPldCLC 9u3bWb9+PSkpKa4OR6lSIb93TVQqR1arlTvv7M6vv27GaAwmKCiFNWuWUrFiRVeHppRb05a5cqpP PvmU1auTsVj+4uLFLSQkPMRjjz3j6rCUcnuazJVTbdu2h5SUToA3AJmZXdi9e49rg1KqFNBkrpyq UaMbMJvnAimA4On5LfXr13F1WEq5Pb3RlnKqzMxMund/mEWLlmI0BhIRYWb16p8pV66cq0NTqkTJ 6422NJkrpxMRDh06REpKCtWqVcPLy8vVISlV4mgyV0opN6C3wFUlxsWLFzl58iT6Za9UwWkyV0VO RHjuuaGEhkYSE3MD9eu34tSpK+YCV0rlQW6T+VTgJLA927J3gd3AVmAuEOTc0JS7mj17NpMnL8Bq PUxqaiK7d7eid++nXB2WUiVabpP5NOD2/yxbAtwA1Af+AoY6MS7lxtat+53k5PuBUMBARsZTbNq0 0dVhKVWi5TaZrwbO/mfZUsDmeLweKO+soJR7i42NwWRaCWQAYDCsoEKFSq4NSqkSLi+jWWKAn4C6 Obz2EzAD+DaH13Q0i7pMeno67dp1ZsuW43h4ROHhsZ1VqxZTt25Oby2lSqfCHJoYQ87J/BWgEXDP VdbTZK6ukJmZya+//kpSUhItWrQgNDTU1SEpVazkNZkX9K6JjwAdgXbXKjRq1Kisx3FxccTFxRWw WlXSGY1Gbr75ZleHoVSxER8fT3x8fL7XL0jL/HZgPHAz8M811tOWuVJK5VFhdbPMwJ60w7APURyJ ffSKN3DGUWYdkNP4Mk3mSimVR3o5v1JKuQG9nF8ppUohTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5 AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG8htMp+KfSLn7dmWhQBLgb+AJUCwc0NTSimV W7lN5tOA2/+z7GXsybw6sNzxXCmllAvkeuZnIAb4CajreP4ncDP2FnskEA/UzGE9EZH8R6iUUqWQ wWCAPOTogvSZR2BP5Dj+jyjAtlQpMHPmTPz8ojAaw6hYsTZHjx51dUhKuQ1PJ21HHP9yNGrUqKzH cXFxxMXFOalaVVJs27aNHj0eBV4FWnLkyLvUqdOKc+cOuzo0pYqF+Ph44uPj871+QbtZ4oATQDlg BdrNoq5i4MCBTJjwJ/bTLACpQACJiQmEhYW5MDKliqei7Gb5EXjY8fhh4IcCbEu5uYCAACAp25IU QDCbzS6KSCn3ktusPwP7yc4w7P3jI4B5wEygInAI6A6cy2FdbZkrzp07R0REVdLTuwJtgPdo1iyE 9etXXFbu999/5+jRozRo0IDKlSu7JFalioO8tszz0s2SX5rMFQAJCQk89FAfjh5NpF27lkyY8AEe Hv/+OOzXbzBfffUDnp71yMhYx9dfT6Fr1y4ujFgp19FkrkqM9evX8+67H5OebiUurgkjRkwkOXkz EAhswmxuz8WLpy9L+EqVFprMVYmwYcMG2rbthMUyAjDh5fUinp5tSUmZm1XGyyuAU6eOEBysFxer 0ievydxZQxOVypP335+MxTIMGAiA1ZpMZuZIYBdQG5hOeHgkQUFBLoxSqZJDk7lyiYyMTMA725Iq VKxYnoSEFhgMPgQHB7J48bxLrROl1HVoN4tyiZUrV3LHHd1JSXkPMGM2P8fkyWO49957OHv2LGXL ltW+clWqaZ+5KjGWLFnCG298iNWawcCBD9Oz5wOuDkmpYkOTuVJKuYGivAJUKaVUMaHJXCml3IAm c6WUcgOazLOxWCz07/8sNWs2p0OHrvz111+uDkkppXJFT4Bm06nTffzyC6SmPovBsJ7g4HHs2bOF 8PBwV4emlCpldDRLPqWkpBAQUIbMzPOADwD+/l347LMH6NGjh2uDU0qVOjqaJZ+MRiP2Y5fsWCLA Bby9va++klJKFROazB28vb3p128AZvNtwGd4ez9B2bL/cNttt7k6NFVMHDx4kKVLl3Lo0CFXh6LU FbSbJRsRYcqUz1m2bA0xMVEMG/ai3rFPAfDJJ1N4/vlheHvXJT19Ox98MJYnnujj6rCUG9M+c6Wc LCEhgSpVbiA19XegKrAXX9/m/P33n5QtW9bV4Sk3pX3myu19/fXXBAaWx9s7hNatO2CxWAq1vsOH D+PtXQV7Igeohrd3RY4cOVKo9SqVF5rMVYmyYsUKevXqz8WLU7BaN7J2rQ8tW7Yv1DpjY2PJyDgE rHcsWUtm5lGqVKlSqPUqlRfOSOZDgZ3AduBbLo3rU6oQvP/++8AjwB1AFeBztm3bXKh1hoaG8t13 X2A2d8Tfvwp+fncxa9ZXlClTplDrVSovCjo5RQzwBFALSAO+B+4Hphdwu0rlyNPTEziUbclhimKO lc6d7+TUqcMcP36c6OhozGZzodepVF4UtGV+AbACZuyfKDNwrKBBKffz/vvvU6VKPWrUaMgPP/yQ 7+28+uqrGAzxQA9gFHAH7dq1ybHsH3/8wZgxY/jwww85d+5cvuu8xM/Pj2rVqmkiV26rL3AROAV8 lcProkq3kSNHCgQKjBcYKWCSmjVryWOPPSapqal53l58fLxUqVJLwsIqSK9ej4rVar2izIIFC8Rk Chej8UXx9b1fKlSoIWfOnHHG7ihVJLBfuZhrBR2aWBX4CWgDnAdmAbOBb7In85EjR2Y9iYuLIy4u roDVqpLEz688Fsv7wL2OJa8BCwArYWHnOHFiL0aj0al1Vq3agAMHxgL2i768vXvzxht1efHFF6+5 3tixY/ntt99o2LAhw4cP16nrVJGJj48nPj4+6/no0aOhCMeZ9wA6AI87nvcCWgBPZyvj+JJRpZWv bxRpaV8B7RxLJgBbHf9X4bPPXuOxxx5zap1hYZU4fXo5EAuAwTCaIUPSefvtMVddp2nTm9m48QDQ GVhE7dpl2blz/VXLK1WYinqc+Z/Yk7fJUWl7YFcBt6nczN13t8XeG7cS+w+5N7G3A3yAaE6dOgWA zWbj0KFDHDt2jII2ADp37oSv7/PAUWAdJtNkOna8+q0ZNm3axMaNG4EtwMfAVnbt2sOSJUsKFIdS RaWgyXwr8CWwEdjmWDa5gNtUbmbGjK/o3r0F3t73A72Bm4A6wHQMhl306NGD8+fP06xZW2rXbkVs bH26dOlJRkZGvuv8+OPx3HtvBAEBjYmI6MWUKeO46aabrlr+4MGDQBgQ6lgSCETpfViUysbFpxFU cbJhwwYJCCgvYBIfn7Iya9YsERHp1auv+Pg8LpApYBGzuYOMHTvOqXWfO3dOEhMTxWazXfHa6dOn xWDwF5gkkCzwlRgMfnL48GGnxqBUbpHHE6B6dkcVqaZNm3LhwhFELKSmnuTee+0nRX//fStpaY9g f0uasFge4LfftjqlzszMTB588HHCw6OJjo6lbds7SUpKuqxMSEgIc+d+hZfXMCAQo3EQX389mQoV KjglBqUKmyZzVSzUqFEVT89Fjmc2fH0Xc8MNVa+5Tm598MEEfvhhL1brCdLTE1mzxp+oqJrUrNmc b7+dkVWuS5cupKf/g81mJSPjDD179nRK/UoVBb1roioWjh8/TsuW7Th3LgCbLZnq1UNZvfpnp1yg 06XLQ8yb1wF42LFkNTAQeBezuQ8zZ35Kp06dClyPUs6U19EshX8dtFK5EBUVxe7d9hEl3t7eNGnS xHHpfsFVr14JH58VpKX1xv7ZWI79DhQdsFheZerUmZrMVYmnLXPl9i5cuEDz5rdw7JgHFouBzMwj wG9ARQyGN+nV6zDTp3/q6jCVuoxOTqFUDtLS0li1ahWbNm3itdfGkZLyPAZDMn5+k1m/Pp7atWu7 OkSlLqPJXJUa6enpeHl5XXrT59qGDRuYPn0GXl6e9O//ODVq1CikCJXKP51pSLm948eP07BhG0wm P/z9Q/n662/ztH6zZs2YOPF/vP/+u7lO5OPHf0BgYAQmUxC9ez9Jenp6fkJXqtBoMlclzl139WT7 9pux2VKxWOLp2/c5tmzZUmj1zZ07lxEjJnDx4kpSU/cye/YRXnhheKHVp1R+aDJXJYrNZmPz5l/J zBwBGIF6wN2sWbOm0Or88celWCzPADWBsqSkvMb8+UsLrT6l8kOTuSpRPDw8CAwsC/zhWJKB0biF cuXKcfbsWV59dRR9+jzFrFmznFZnREQIXl7Z7x+3i/Dw0KuWV8oV9ASoKnHmzZtHz55PYDB0xGDY SbNm5Zgz50saNGhFQkJL0tMbYDZ/zNChjzB8+EsFri8xMZH69Vty7lwjMjND8fKazfLl82nevLkT 9kapnOloFlUq7N69m7Vr1xIeHk6nTp345ptveOqpmSQnz3eU+Btf37pYLOfzPNolJ2fPnmXmzJmk pqbSqVMnYmNjC7xNpa5FrwBVpUKtWrWoVatW1vPU1FRstuxdH6FkZKQjIk5J5mXKlOHJJ58s8HaU KizaZ14MiQiZmZmuDqNEue222zAaFwHTgM34+vamc+d7ddo3VWroO70YERFeeulVfH398fX144EH +uh45lyqVKkS8fGLaNbsGypVepjevSvwzTdTXB2WUkVG+8yLkc8+m8rgwR+RnLwQ8MNkeoD+/esz fvybrg5NKVXE9ArQEmzhwniSkwcC5YBAUlJeZtGiFa4OSylVAmgyL0YqVIjAy2tz1nODYTNRUREu jEgpVVI4o5slGPgMuAH7nHV9sN9f9BLtZsmlxMREGjRoxfnztRDxx9PzF9at+0Xv6KdUKeSKcebT gZXAVOxDHf2A89le12SeB+fPn+fHH38kPT2dO+64g6ioKFeHpJRygaJO5kHAZqDKNcpoMldKqTwq 6hOglYFE7IN7/wCmAAWftFEpVST++ecf+vUbTPv23Xj99bfJyMhwdUgqnwp6Bagn0AgYAPwOvA+8 DIzIXmjUqFFZj+Pi4oiLiytgtao4mzRpEoMHjyQ93UqVKhX57bdlhIZeeWMqEeHdd9/ljz/+oHXr 1gwcODDfddpsNhITEwkODsbHx6cg4ZcoycnJHDlyhOjoaAICAvK0rsVioVmzOI4ejcNqfYB16yaz Y8effP/9F4UTrLqm+Ph44uPjXVZ/JHAw2/Mbgfn/KSOqaH377bfy4IO9ZOTIkZKSklKkdS9btkzA LPCJwBqBtmI0lhEfH39p2LCN7N+/P6ts3botBCoI9BGIlBtv7JCvOnfv3i3ly1cXX99Q8fHxlylT pl5R5siRIzJhwgT5+OOP5cSJE/nev6KyevVqadv2LmnWrINMnvyZJCQkyKuvjpSnn35Wli1bJiIi ixcvFn//MPH3jxWTKVi+/36WrF+/Xl5//XWZMGGCXLx48Zp1LFiwQAICbhSwCYhAknh6muT8+fNF sYvqOrAPKClSq4DqjsejgLH/ed3Vx6RU6dOnryOZ1hMIlMjIWElPTy+y+u+77z6BBx3JQQROC3gJ nBYPj3elQoUasnXrVvnf//4nECRwzlHupIBJtm3bluc6K1euIwbDx47t/Clmc6Rs3bo16/Xdu3dL YGCE+Po+KibTQxISEi2HDh1y5m471caNG8VsDhOYKvCjmEw1xN8/VDw9+wuMFbO5vEyaNEX8/cME Vjr2e7N4eweLr2+YeHgMEZOpq8TG1pc9e/bIunXr5J9//rminh9//FECAtpm+1uliJeXn5w9e9YF e63+Cxck8/rYu1i2AnOxnxTVZO4CaWlpAr4Ci7MlyLIyfvz4IouhT58+Ah2zJYgDAj6O1l+6GAyB YjAECngI+AkszVa2vPzf//2fiIgkJSXJL7/8IqtXr77ml5HFYhGj0Ttb61LE37+XTJ36b+u8U6ce YjCMy3rdw2OE9OrVt9CPRX499dRggTeyHZdVAuUve+7vHyJeXmUFPhBIFxAxGOoJfJRVztOzgXh5 BUlQUBPx8wuVhQsXXlbPhQsXJCoqVjw9hwn8LCbT3dKx4735innjxo0yadIkWbRokdhsNmcchlxL Tk6WtWvXyrZt24q87sLkimR+Pa4+JiXWli1bpEmTthIVVUPuv7/PdX/+Hj9+XMA724deBO6W/v37 F1HEIseOHROjMVCgn8AkgRiBLo5YRjpa45MdyXe5QBmBQwJTxWDwkzNnzsixY8ekfPnqEhjYQvz9 60qDBq0lKSkpx/psNpsEBIQJrM3qKvDzq5nVFSEi0rRpe4GF2Y7Jd9Khwz1FdUjybNCg5wVGZIt3 meM4Xnp+j0Ajgf8JtBfoLLDf8eW4wVFmj0Cw49iKwBrx8wu9otvt2LFj0r37I9K48S3y7LMv56tb 7tNPp4jZXE7M5j7i719H7r//0asm1Tlz5kjv3k/Kiy8OlZMnT+br+GS3f/9+iYysIoGBjcVsriid Ot0nVqv1inJ79uyRevVai69voNSq1VS2b99e4LoLG5rM3cPx48fFbA51JL4d4uXVW9q2vfOa69hs NvH0DBT4wfEBPipQRhYtWiQiIp999pnUqNFIatduInPnznVKnIcOHZJt27ZJampq1rIDBw5IXFwH qV27iVSvXkfM5sbi6fmCGI2hAhH/+bJpLoAYjcEya9YsERG5++6e4un5iuP1TPH1fUCGDh1x1Rjm z58vZnOYBAbeJX5+VaV37ycvSyZvvDFWzObWjuNxSMzmhjJx4qdO2f/CsGPHDvHzCxMYJ/CF+PpW EC+vAMff9WeBQIFkx/FJFygnPj7BUq9eC/HxuV/gmMBbAi0vO9Zmc7QcPHjQqbGmpqaKt7efwF5H PRbx84uVNWvWXFH2jTfeFg+PcAF/gTAJDo6Q06dPF6j+1q1vEw+Pdx11p4rZfLNMmjTpihgjI6uI wfCh2Lv9PpeQkPJy4cKFAtVd2NBk7h4GDRokcFu2D2O6GI0+YrFYrrne4sWLHQm9ohgMZnnqqWdE RBx91AECHwq8I2CW7777Lt/x2Ww2ue++XmI0BoqnZ6QEB0dednLzkszMTJk5c6a89dZb8uijfcTe 5XLQsU8XxGiMkPXr12dtc8GCBVK2bHWB1dn2fZrcffeD14zn4MGDMmfOHFm7du0VrcKMjAwZOPAF MZmCxc8vRIYOHVnsf45v2bJFund/RDp27CFz5syVJUuWSO3aLaRs2Sri5RUt2buVzOb6Mnv2bLl4 8aLcc08v8fcPl/DwSuLtHeJosYvASvH3D7vsS9cZTp48Kd7ewWI/TxIr0E78/OJkzpw5V5T19Cwj 0FvglNi7joJl6NChV5SzWq3ywguvSHR0TYmNbZTV9ZaT8PDKAn9le6+8LQMHPndZme3bt0tAQI3L vtiCgprm+IVTnKDJ3D1ER1dztKwufWgTxMPDW/78809ZtmzZNZN6UlKSbN269bJRG4GBMQLfZHtD /08qVqyT7/g++eQTRwvrJbF3p1SUihVrXHMdq9UqtWo1dnStdBeDoYL07Nkn6/X+/Z8VP79a4uHR UKCnQIaARczm9jJ27Lh8x+pOrFarVKvWQDw9hwhsF6NxjERFxUpycvIVZSdOnCS+vsESGFhP/P3D ZMmSJU6PJzMzU7y8QgX6CuwW+FjALJs3b76irL0L8HS29+DT0rlz5yvKvfjicDGb2whsEfhZzOZI Wb16dY71t23bWYzGkY7PyUXx82sh06ZNu6zM0aNHxdc3ROCso96LYjZHya5du5xyDAoLmszdQ6VK dQXqCHQXGC9Q3fHT21ugjHh4BObpw2k2VxCYl+2DNEUiI6+dfK+lXbt2Yh9SeGl7m8RgCLjuejab TebMmSMjR4687GTZ3r17xWQqK/bRLecF2ggEird3GenSpWeO/aDZtzlx4qdSpUpDqVq1oUyaNCXf +1USJCQkSMeO90l0dE255Za7rjky5+TJk7Jp0yY5d+5cocTyzz//OLqAMrL9UmgvP/zwwxVlvbyC BdY5ytkEbpLXXnvtinLR0TUdifzSe2uMDBr0fI71HzlyRGJibhB//1jx9Q2Tnj0fk8zMzCvKPf30 8+Lnd4MYjUPEz6+h9OrVt9j/OkOTuXt46613xWyu62jxdBKDwUugrKM/VATGi7d3eK6399BDjwhE if1E4P8JlJHhw4fnOz77EMRB2T5wf4nRGJTv7a1bt04CAxtn255N/Pyqy9KlS6+77rRp08Vsrub4 6b5SzOaq8vXX3+Y7FpV7SUn2senwj1w6xxEQ0CjHv1tAQLhAuMBzAh3FYCgrn3565bmLatUaCyzK ei8YjQNk+PCrnzNJT0+XnTt3yt9//33VMjabTebNmydjxoyR2bNnF/tELqLJ3G3YbDZ55533pFat FtKoUZzYh/L1z5bskgWMedpe9+49xcsrQry9I+XppwcWKL4dO3aI0RggME3sY50byqOPPpnv7V24 cEHKlIkW+Mqxb59LWFjF654jEBFp0+ZOgVnZjs0Madeua75jUXkzePBL4udXX2Cc+PreJU2a3Jzj cFIfnwCxj8x5W2CKeHoOkHffffeKcvPmzROTKULgDfH0HCChoeXl2LFjRbErxQqazN3P9u3bHd0r 1QUsjoT1f2IwBLo0rrVr10rDhjdLTEwDGTZspGRkZBRoe5s3b5YqVeqJ0egt1ao1zPXwsY4duzv6 ai8l8w/k7rt7Zr1utVpl4MAXJCionISHx8iECZ8UKE51OZvNJt9884307/+MjBs3/qrDG2+7rZt4 ez/u6EpbJyZThGzcuDHHsr/++qsMHvyCvPrqyFKZyEU0mbulkydPiv0qympiH9rXQsAkvXr1cnVo xcL69esdV0yOEhghfn5hsmnTpqzXhw0bJWbzTWIf2fGHmM2VrzlCIjfOnDlTaP3Q7urMmTNy661d xdvbT0JDK8j33890dUjFGprM3dPNN3cQ+0UhVQR8JDi4nNOHmV3PokWL5JFHHpVhw4Zd974fRW3r 1q0yaNDz8swzL1zRoq9WrYnY7xNzqeX+sfTs+fg1t7ds2TK58cY4adnyJpk3b17WcovFIrff3k28 vPzFy8tPund/+JonZ5XKLzSZu6eMjAwZOfI1ad26vTz+eL8ibxWOHv2a48ukgUCoBAZGXfWqzOKm WbP2jr74SyfUnpdBg164avkff/xRwCTwstivxDTL9OnTRcTeP2wydRNIE0gSs7mdjBkztqh2RZUi aDJXhcHDI0j+Had+UaC6DBxYsJOoRWXNmjViNoeJ0ficeHv3kdDQ8nL06NGrlq9Y8QaxX1j17zDO kJAqIiLSqFFbgSWXnWy99dbie2sAVXKRx2SuEzqrXLHZkoHOjmf+wK0cOnTIdQHlQatWrdi4cRWj R4fy5pu12blzI9HR0Vctb7GkY7+78yWRpKVZAahatSKenvGO5YK390piYysWVuhK5Zoz5gC9HseX jCrJAgKiSUoaBjwNnAYa8Omnw3nyySddHJnzPf30QD7+eDbwPeAN9OTee5sza9YMjh07RrNmcVy8 WB5IJzz8Ir//Hk9ISIhrg1ZuxxUTOl+PJnMXsVqt3H773axZswVvby/GjXuFvn375mtbf/zxB61a 3Upamg9wjnvuuZvZs791bsDFhIjQvXtP5s5dAgi33NKSxYt/wsPD/kP24sWLrFy5EqPRSFxcHCaT ybUBK7ekyVxlad48jg0bzgL/Aw4BA5k3bwZ33XVXvraXlpbG/v37CQkJITIy8vorlDJJSUl89dVX 2Gw2evXqRWBgoKtDUiWYJvNSatq0afTt+yIZGcn4+4fyyy//R/Pm7RBZD9RylHqeuLjNrFjxiytD dUuHDh2iRo3GpKdHAh54eR1jx47fqF69+nXXVSoneU3megLUDezYsYM+fQaQkTEB+JukpN60bn07 9u9QS7aSSfj4eBeormXLltGz5+M89tjT7Nq1i6SkJFJTUwu0TXfQuXMP0tPvAXYA27BaH6JTpx45 lrXZbJw/fx5t5Chn0mTuBmbMmAE0Bu7HPtJkGFZrOrfe2ga4C/gcGA58zeuvv57ven744Qfuuqs3 M2Y0ZOrUUG64oQUBAcGYTAE0aXIjNpvNCXtTMh09mgjcjr0hZQBuJyHhzBXlFi5cSFBQWcLDo4mO rsbWrVuLOFLlrjSZuwF7//XfwCNAKBAO2Pj880m88EJPoqPfo1atn1m9ejFNmzbNdz0jR75HSsok 7CNaLMCNwHngMJs2naJPn8cLuislVo0aFYFPgTQgHfiU2NjLhz8eO3aM++57mKSkH7Fak0hIGEWH DndhtVoLJaZ9+/bRq1dfOnbswfTpX2X9EsjMzCyU+pR7MAKbgZ9yeM1FQ+5LD6vVKiZTmMCNAkkC FvHwaCcvv3z124bmR82azQVWOC6WaSL/3ptaBCZJhQo3OLW+kuTMmTNSpkxFAbOAnwQGRsupU6cu K7NgwQLE4WkEAAAgAElEQVQJCro12zGzT+V2rfuR59fhw4clKChCPDxeE/hazOZaMmTIUKlZs4kY DB4SGlq+UCarUM6Diy4aegbYldfKlXN4enrStGkL4FnADzBhsz3HihW/ObWefv0ewmweACwHbMB4 x7+9wAYiI8s4tb6SpEyZMpw+fYh165azZs0Szpz5m/Dw8MvKREdHY7Xuwv5rBmAfmZkXCAsLc3o8 M2bMwGLpis32KvAgFst3jBs3kT17eiKSxunTX9K1a08OHz7s9LqVazgjmZcHOgKfUTSjY1QOqlWr hJfXr1nPPT1/pXLl8k6tY9Cgp3n77aeoUWMoRuNe7Al9D9AIg+E72rZtxbFjx5xaZ0liMBho0aIF rVq1wmg0XvF6/fr1efTRHvj5NcLf/wHM5jZ88MF7+Pn5OT2WjIxMRHyyLfHBZrMh8izgCbTFaGzJ xo0bnV63cg1nJN9ZwJtAIPAC/17zfYnjF4MqTKdOnaJJk5s4dy4a8MDf/yAbN64iKirK6XU9++wQ JkywkpHxP8eSL7D/6StgMOxj5cqFtGnTxun1uos1a9Zw8OBB6tevT926dQuljn379tGwYSuSkkYB VTCZXiE1dTci24GqQCp+fvX4+eep3HjjjYUSgyqYvA5N9CxgfXcCp7D3l8ddrdCoUaOyHsfFxREX d9WiKp/Kli3Lrl0bWb58OSLCLbfcUmgXrZw6dZaMjEbZltQAKgO/IzKGu+/uzZkzBwtUR2JiIoMG vcyuXXtp0qQe7703hqCgoAJts7ho3bo1rVu3LtQ6YmNjWb16CUOGvMa2bdtJTDyMweCBwdAEb++7 MBq3cMcdLQs9DpV78fHxxMfHu6z+N4EjwEEgAUgGvvxPGRefRlDONnPmLMecmzsEjgrcJDBcLk3s bDSGFmj7qampUrVqPfHyGizwi/j4PCqNG9+U40S96tpmzJjhmEv2lIBVvLwelYYNW8v8+fMvmwcz MzNTHnvsSQkNrSQVK1aX+fPnuzBqJeLaW+DejI5mKTXGjXtfgoPLidHoLxAtcEYgU6CvREfXKtC2 165dKwEB9cU+g7t9kmCzubzs3bvXSdGXHk8+OUhgfLYRNDskKqrGFeXuuusegVDH/Jz9BMyyatUq F0SsLsHFt8DVzvESxmazMXz4a0REVKVixRv44ov//rDK2fPPP8PZs8dJTT1L5cohQDRQBoPhO0aP fv6KKxx3797NuHHj+Pjjjzl79uw1t200GhFJ49+3UwYi1hxPKqprq1KlPL6+a7h0LA2GNZQvf+WJ 8fnzlwM/AC8BnwD3MXr0awDMmTOHGjWaUqlSXUaNGlOqLw4r7Vz9BaeuYejQEQJlBIwCRjEYAuWn n37K0zb69u0vECDQUqCO2Ceftm9v9OjRsnLlSjGbw8TTc4D4+HSTcuWqSmJi4lW3Z7VapVGjNuLr +4DA12Iy3SkdOtx9WbeAyp3k5GSpV6+l+Ps3l4CAzhIUFCnbtm27opzBECjwV7YW/MsSF3eLLF++ XMzmcgKLBTaK2dxUXnvtLRfsSelDHhvHeqOtUs7HJ5z09JbATOAicDOVK9s4cODPXG/D0zOYzEwr 0AhYD5iA3sA24A8qV67MwYP3AJOAc4Avjz12D599NuWq20xOTmb06LfYsWMvzZvX4+WXX8DHx+eq 5dPT0xGRa5YpKBHh5MmThIWF4elZ0LEDRSc9PZ1ly5ZhsVho06YNERERV5S56abbWL36IvZW+d/A gyxY8D1z5ixg6tSqwHOOkr9RterT7Nu3qeh2oJTK62iWouDarzd1TRAisFZgn8AWgQni5xclzz33 gvj7V5KAgEoycuTI62wjWOAjgUOOKyDXO1p3NoHW4ulpcvTHLnYsnyve3sGSnJxc4PjT09Oldu3G Ap4CnhIbW19SUlIKvN3/WrRokXh6lhEwCJjkpZdednodhcVms8lXX30t3br1kgEDnpOEhIQryqSn p0unTt3EZIqU4OBKMm3aNBEReeaZF8TD46VsLfYfpF69G4t4D0onimG3tauPiboGP78ogRscCbmi QLCUKVNWIExgtsB3AkHyxhtvXHUbECSwXeCCI6leyPbh7yvBwaGO7pd/L2M3marl+HNfxJ58hgx5 SSpXri/ly1eTRo2aS8+evXLsmunY8W6xTzJ9UiBRoJnExd3utOMjYh/pYTQGCbwrkCGwWsBPli9f 7tR6CsuQIcPEw6OKwGSBpyUgIEL++ecfSU5OlgEDXpCGDeOke/dH5Pjx41ese+DAAQkKihQPj+cF 3hSTqawsWLDABXtR+qDJXOVFjx49BOoKJDsS7euOxP59tuT7uYSHV7/qNqKjawr0cSS6co7HZwV+ FQiQiRMnitEY7BgeJwJHxccnSE6ePCkHDhyQ119/Xd5//325cOGCiIh063a/QIzANIFhjtZ+efH1 DZezZ89eVndwcBXHl86lWOeLv39Fpx6jvXv3CvhmG10jArfL4MGDnVpPYfHw8HP88roUe2d56aWX pF27zuLre5/AEvH0fFnKl68uSUlJV6x/8OBBGTJkmAwY8JysXbvWBXtQOpHHZF5yOv5UoThw4DD2 W+eaHUt6AmOx3/nvkjQ8PK7edbd69ULq1m1NcrI/9i6+H4GvAR+Cgnx4+OGHOXo0kQ8/bIrB0Bqb bSUjRoxg+/btdOjQDRF/IJlhw97i7793MHfuPMAKPAE0wX4b31RSU3fTtWtXKleujNlsJi4ujjJl /Dh3bhNwjyOaPwgKcu7l8fbJnzOx34OmOpAK7CQ29k6n1lNYbDYrEJBtSQjbt29n9eo1pKcnAl5k ZHTg/Plf+fXXX7ntttsuWz8mJoaxY8cUZciqmHL1F5y6hm7d7hFoLGBxtNreFqMxVCBQYJLABAE/ mThx4jW3k5mZKXPmzBHwEUjJagUGBLTJ+lm+bt06mT59umzcuFFERIKDKwk862jxWgRaSoUKMQK1 Ha34JIH2ApUFbhUoJwbDbQIvCISKl1eM3HzzbWIw+AvcKXC3GAx+snr1aqcfpyee6OfoTnpQoKrE xNQtMRcx+fqGCbR1dA99KuAnb731lnh7B2T7u9skIKBZvu6kOHz4q+LhESDgJeHhsYVyF8jSCO1m UXlx4sQJ8fYOdfSR1xDwl08++UTGjRsnkZE1pVy5mvLxxx9LZmamHDhwQA4dOpTjEMHJk6c4vgBM 2RKEiNncUhYuXJhj3fYvjc3Zfv5/JB4eoY7ulUvLVor9JG1vgVuydXWsF6gonp4VZPbs2dK3b195 4oknZPfu3YV2rP7v//5PnnjiCXn33XdL1DDJ+fPni6dnkBgMFcTDo5w0bnyjWK1W6dbtQTGbbxWY Id7efaVatQZ5Pnk8e/ZssQ9LXStwXuAJCQ2tUkh7UrqgyVzl1YkTJ+SZZwZL796PyC+//CIiIq+8 Mlw8PcPEYCgjNWs2krJlqzr60oMkJqaOWCyWrPWnTfvCkcSNAvcLdBSYK/CU+PuXzRq1kpaWJitW rJClS5dKUlKSREfXEhjhSM7pAm0lIKCs2K9AvJTMxzlaxEbx8Hg62/J/HF8ezWTMmDEuOW4lyd69 e+WLL76Qn376STIyMkTEPoLltdfekltvvVcGDHhezpw5k+ftdunSReDJbH8X+0nwa/ntt99kxIiR Mn78+CvOgah/oclcFdTnn38u4OdIyBvFPsrlXrGf4EwXuF1uv/2urPJVq9YR6CL2kSx7BEYLdBKI kmeeeUZERM6fPy+1azeVgIBGEhjYWsqXry6rVq1ydAHECkRITEwdWbFihaPuWwTuEjBL7doNZMOG DY6yywWOCfQUuFnAX/r16+eqQ1XqPf744wKtsv1i+k0MBr+rlp87d66YTBFiMAwTH5+eUqFCDU3o V4Emc1VQrVq1EXg5W2urlfw7RlwEZorZXD6rqyEmpoYjed8pECHwikCcmM0RWa3y558fKj4+D2d9 6D09h8k99/QSi8Uiq1evlj/++COrD/r333+XevUaSsWKVWTQoEFZLcmZM2cK+DuSvb9AdYEImTRp kmsOlJLTp0+Lj0+YQGuB/gKB0q/fU1ctX758Lfl3tioRH5+e8t577xVhxCUHOppFFVRQkD9wMtuS CGAu0AH7+2seFouFwYNfokWLxhw7loB9TtDzQHPgQ6Kigti9+y/MZvsomT//PEhaWicuXdCWkdGB v/56FZPJdMX9tJs0acLWrX9cEdd9991H377xTJ78PXAvsJrY2Egef7z0zj3qaiEhIRw79ieDBg3i 1Kl93Hffu/Tt2/eq5ZOSzgMxWc/T0ytz7tz5q5ZXxYurv+BUHu3evVs8PPwFnnb0WZdxtIZrCFR1 9GGvFqPRW3x9ywhsy3ZS0iTduz8o6enpl23zzTffEbO5vdjHs1vFx6enPPnkM/mKb968edK/f395 //33S8yIEmXXu/eTYjLdLfarhVeIyRQhv/32m6vDKpbQe7MoZ9i1axeDBj3LqVNn8PExc+rUWY4c OYFIT+z36YjAwyMIf//6XLiwPmu9wMA6rFr1DfXr179sexkZGfTo8Qjz5/+EweBJ06ZNWbRoNv7+ /kW7Y8qlUlJS6NfvWX788Sf8/YP48MMxdO3a1dVhFUt5vTeLJnN1VRcvXqRmzUacOnUPGRltsE/e nAx8iK/vezRvnsSGDb+RkrIO+8U02zCZ4jh6dB8hISE5bjMxMZHMzEwiIiIuvVmVUjnIazJ39v3M lRv55ZdfuHixEhkZbwOdgAUYDFuoUqUfDz0UwcKFs/jww3GYTC0JCmqBydSWqVM/JSQkhIkTJ2Iy RWI0lqFatQacOHECgPDwcCIjIzWRK+Vk2jJXV/Xjjz/y0EPvc/HiL44lyXh6hnP27KnLukeOHz/O wYMHqVq1KpGRkSxcuJA77+yFyFwgHHiM0NAETp7crxNMKJVL2jJXTnPLLbcQHHwcL6/ngLmYzV3p 1q37Ff3cUVFRtG7dmsjISACmTJmOyFDsMwnWBiZy+vRJQkIqU6ZMDCNGjHRKfDt37uSmmzoRG9uY fv2eJSUlxSnbVaok0qGJ6qr8/f3ZuHEVQ4eO5sCB6cTFxTFs2IvXXS84OAD7HN+X/A8wcuHC84CB 118fjsFgYPToUZetZ7PZ+P777zlw4AANGjSgU6dOV60jISGB1q3bc+HCcESacuzYWBIS+jBv3oz8 7KpSJZ52syinO3r0KJUr30BGRncgEpgAvA086SgxFV/f4SQnH8XDw/7jUES4555eLFmyl5SUtphM P/DUU/fxzjuv51jH9OnTefrphSQnf+9YkoLRGExKShJeXl6Fu4NKFYGi7mapAKwAdgI7gEEF3J5y A+XLl+evv7bQvv0RatdegK+vmX9vsQvgR2qqlbi429m4cSP9+w+mR4+H+Pnn1SQnr8Rme5vk5F/5 4IMPOH36dI51+Pj4YDCcy7bkAgaDR9aXQ3aZmZns3buXxMREp+6nUu4kEmjgeOwP7AFq/aeMywbd q+LhnXfeEfu0cf8nME8gXGC4gJeYTKECbwr0EvuMQf/ORuTnV1H279+f4zYvXrwolSvfIN7ejwl8 In5+9WXIkOFXlNu+fbv4+oaL/c6LvhIXd0eJuuOhKr1w8UVDPwAfAcuzLXPEpUqzdu3a88svW4Eg 4BFgKBCGvT/9EeAMEAu8D3TEw+Nzypf/gv37t1918uSzZ88ydux4Dh8+wW233UTv3r2uGPIYElKZ s2cfBkYCZ4GmjBrVm5EjnXMSVqnC4sqLhmKAlcANQFK25ZrMFdu2baN+/VbYk3h74GNgPvAF0NlR 6jX8/D7FZrNQu3YDZs/+gpiYmALVazD4AX8B0Y4lI7jxxpWsXLmCTz6ZxOrVG6lZM4YXX3wOPz/n zlCkVEG4Kpn7A/HAG9hb59lJ9lZQXFwccXFxTqpWlSQffPARzz77KmDEywsGDOjDp5/+hMUyGUjH bH6Mb775gC5dujitTm/vcKzWt4DHgTTgRh56qCYGg5k5c3ZisfTG13c5NWoc5fff4/XkqXKZ+Ph4 4uPjs56PHj0aimaQShYvYDEw+Cqvu7bjSRWazMxMGTJkuAQHR0lISAUZO3b8dfujLRaL/P3335Ke ni42m00mTPhEYmMbS40azWT69K+cHuNnn33muElYE4EoCQiIksOHD4uXl79jIgURyBR//wayYsUK p9f/X0lJSWK1Wgu9HlXyUcT3MzcAX2Lv+LwaVx8TVUjGjHlHfHxqCrwm8LWYzTULJSEX1MaNG2Xw 4MHyxhtvSEpKiiQkJIiPT4hjsg37ydbAwJvl559/LrQYEhMTpWnTOPH09BUvL5OMHTv+ijKpqamy b98+uXDhQqHFoUoOijiZ3wjYgC3AZse/2zWZlw6hoVUcswQ9JlBBoKd06nS/q8O6LpvNJs2b3yI+ Po8JrBej8U0pWzZGzp8/X2h1dujQVby8Bjm+QP4Ws7myLF68OOv19evXS5kyUeLnV0l8fALls8+m FVosqmTIazIv6DjzXx3baAA0dPz7uYDbVCXA9u3bOXv2ArAJ+AxYC/xAYKCp0OvOzMzk9dffpkWL 2+jWrRf79+/P0/oGg4HFi+dy770eVK3aj1tu+Z3161cQGBhYSBHD+vVrsVqHAEagIikpD7JmzVrA vj933NGNs2cnkJx8iLS0DQwa9BJ79uwptHjchYjwxRdf0q5dV7p2fYht27a5OiS35uovOFUIli5d Kv7+bS4bFw5lZfny5YVe9xNPDBSz+SaBBeLh8aaUKRMlJ06cKNQ6MzMz5Y033pbKletKnTotZMmS JXlaPza2ocDsrD56s/nWrOnuEhISxNc39LJjGRh4t8yePbswdsWtfPDBBDGbawh8L/Ce+PmFyZ9/ /unqsJwCnQNUFYVTp06Jv3+4wEKBTIHPJTS0gqSlpRVqvTabTby8TAKJWYnPbL5fpkyZUqj1Pv/8 y2IwBGfNO+rhESRr167N9fpr1qwRf/9wCQi4T/z9m0rz5rdkHav09HQxm8s4ZmoSgUQxm8vLH3/8 UVi74zbKl6+d7biJGAxD5OWXX3F1WE5BEXezqFIqPDycBQtmExbWD4PBi5iY94iPX4i3tzdffPEl 4eGV8PIKo0yZKk6/o6F9/G1mtiUZOV7G70wTJkxDZCD2i5wPYbPdwCuvjMj1+q1atWLXrk18+mkX vvtuJL/+uhhvb28AvLy8mDFjOmZzJ4KC2mMy1eWZZx6nYcOGhbMzbkW4fPSeprTC5OovOFXIss/3 uXjxYjGZogQiBMY65grtLB073uu0+gYNelHM5uYCM8VofEXCwipIYmKi07afE6MxRGBntq6Q96Re veZOrePo0aPy888/y65du5y6XXc2btz7YjbXEpgj8JH4+YW5zfEjjy1zvQWuKrDsF9rMnbuAlJRb gPPAEAAyM5uyZEkwFosFs9mc80by4H//e5uYmIksWDCDqKhwxoxZQ1hYWIG3ey01a1Zn584ZwOtA KvAd9957p1PriI6OJjo6+voFVZbnnhtEYGAAX345laAgf157bTG1av339lClg94CVznVsGGvMnbs Jmy2VOy36DEAZzEay2GxXMjqWihpjhw5QpMmN3HmjBG4wE03NWfJkh905iRVaHRCZ1Wk0tLS2LRp E0ajkcaNG/PPP/9Qr14zEhPTgY5AG3x9P+bRR2/k44+vdW1Z8ZeWlsauXbswm81Ur15d5zFVhUqT uSoyiYmJtGzZnlOnPBBJo1q1UFatWsT8+fMZOXIM//xzhipVqvHoo/fTr1/fQj9JqZQ7yWsy1z5z lW+DBr3M4cPtsFrHA8KuXb3o3fsxFi/+FYvldSCZ1NTXaNKkkSZypQqZfsJUvu3evQ+r9U7sjQcP 0tI6sXz5BiyWj4A+wEAslqHcf/9jtGgRx7hx76G/0nJn3bp13HrrPbRu3ZFp06ZfdtxsNhvTpk1j wIDn+OSTT8jIyHBhpKq40Ja5yrcmTerx559fkZZ2M5CJyTQDs9mTCxeyn+Tcz8GD+zl48ALr17/C d9/NZuPGta4KuUTYvHkz7dvfhcXyJhDOli0vcepUIikpFs6evcDOnX+ybt0ZLJaumM2zmTdvKYsW zdE+/FJO+8xVvl24cIF27e5i16592GxW2rRpyf33d2HgwNFYLO9hnz1oALAEaAPsBpqwbt1yWrRo 4crQi0R6ejqbN2/GYDDQqFGjq86Y9F8DBjzHxIkhwHDHklUYjd3w8LgHq7UMMBE4AfgB6fj51WDN mh+oX79+oeyHcg3tM1dFJjAwkPXrf+HgwYMYjUYqVaqEwWDAZPLlo48mc/DgPk6cCMKeyME+PWwt Vq1a5fbJ/PTp07Rq1YGEhAxEMqhatQyrV/9MQEDAddf18DBgMGTybxsoA5vNRGbmJOBP4Dv+nSDb G6MxjOTk5ELZD1VyaMtcFZrff/+dZs1uwn5zzcbAIaAu8fHzufnmm10aW2F75JH+zJhhJD39I0Dw 8XmUp54qx3vvvX3ddXfs2EGLFm1JTn4FCMfL62Ws1vrYp9mzAvWBu4BH8fD4kYiISezdu1WnvbuO kydP8vXXX5OWlkbXrl2L/cVFeW2Z6wlQVWiaNm1Kr17dsbfM6wB16NLlDrdP5AA7duwlPb0z/54c vpNt2/7K1bp16tRh9eoldOv2B7fe+gOvvz4As3kD8BOwB1/fcKKjfyQiohOtW6/g11+XaCK/jmPH jlGnTlOGDdvFiBH/0KTJTaxd617nbrRlrgrdtm3bWLlyJY0bN6ZVq1auDqdI9O//LNOmnSEtbSpg w9e3B4MH1+Wtt0bna3uLFy/mmWde5eLFC3Tr1pnx48dc92ra06dPM2nSZM6cOU/nzqXjS/RqBg9+ kQkThMzMcY4lX9G8+Zf89ttSl8Z1LXrRkFLFwMWLF2nf/m527PgLERvNmzdi0aLZ+Pr6Fkn9Z86c oU6dZpw+fRPp6VUwmz9h8uR3efDBnkVSf3Hz4INP8O23DYGnHEvWUr36YPbs2eDKsK5JT4AqVQwE BASwbt0yDhw4gIeHB5UrVy7SoYPTp0/nzJmWpKdPBcBiuYUXX3yk1Cbz++7rxNy5z5Ka2hIIxtt7 CPfc09HVYTmVM/rMb8d+in0v8JITtqeUW/Dw8CA2NpYqVapgs9kYPfot6tRpzY033sH69esLte6k pGSs1qhsS6KxWJIKtc7irFy5cmRmnsF+v6Bm2Gx/ERNT3tVhOVVBk7kRmIA9odcGHsA+/kypAtu5 cyfz5s3jr79yd+KwOHvppVd555357Nz5JmvW9KBduzvZvXt3odXXqVNHfHymAQuBPzGZnqJbt66F Vl9xN3nyl1itw4EEIJGMjG/54IOprg7LqQqazJsB+7CPObNiHwB7dwG3qRRjxrxL06bt6d17Cg0a 3MjkyZ9fs/zUqV9Qu3ZLatduyfTpXxVRlLk3depXWCxfADcDj5Ca2ps5c+YWWn2NGjVi7twvqVbt VSIi7qRXr1g++eS9QquvuPPwMADZb3tg1fsF/ce9wJRszx8CPvpPmaKfokOVaPv27RNf3zCB445Z ff4SX98gOXPmTI7lv/76WzGbqwgsFVgiZnOMfP/9zCKO+trCwysL/JE1U5GX1xPyzjvvuDqsUmPz 5s1iNocJfCAwXczmCvLttzNcHdY1UcRzgOowFeV0R44cwcenBlDOsaQaXl4RJCQk5Fh+8uQZWCxv A+2BDlgsbzJlyndFFG3uvPrqC5jN9wFTMBqH4u+/gAcffNDVYZUaDRo0YOXKRXTrtpE77ljAt99+ xAMP3O/qsJyqoKNZjgEVsj2vABz9b6FRo0ZlPY6LiyMuLq6A1Sp3VqtWLazWP4HfgBbAzxgM56hU qVKO5f38fIGz2ZacwWTyKfxA82DgwKeIjCzLrFkLCA0NYujQdURFRV1/ReU0TZo0Yc6cL10dxlXF x8cTHx+f7/ULOlbKE/t05e2A48AG7CdBs5/ZcfxiUCr3FixYQPfuvRDxxtsbfvppFm3atMmx7Lp1 6xx3GXwesGE2/48VKxbQrFmzog1aKSdyxUVDdwDvYx/Z8jnw1n9e12Su8iU9PZ1Tp04RERFx2aTR Odm0aROTJn2BwWCgX79HadiwYRFFqVTh0CtAlVLKDeiNtpRSqhTSZK6UUm5Ak7lSSrkBTeZKKeUG NJkrpZQb0GSulFJuQJO5Ukq5AU3mSinlBjSZK6WUG9BkrpRSbkCTuVJKuQFN5kop5QY0mSullBvQ ZK6UUm5Ak7lSSrkBTeZKKeUGNJkrpZQb0GSulFJuQJO5Ukq5gYIk83eB3cBWYC4Q5JSIlFJK5VlB kvkS4AagPvAXMNQpERWB+Ph4V4dwBY0p94pjXBpT7mhMhacgyXwpYHM8Xg+UL3g4RaM4/vE0ptwr jnFpTLmjMRUeZ/WZ9wEWOmlbSiml8sjzOq8vBSJzWD4M+Mnx+BUgHfjWiXEppZTKA0MB138EeAJo B6Repcw+oGoB61FKqdJmPxBbFBXdDuwEwoqiMqWUUldXkJb5XsAbOON4vg54qsARKaWUUkoppZzP CGzm35OlxUEwMBv7BU+7gBauDQewj9HfCWzHfiLZxwUxTAVOOmK4JAT7SfC/sF9XEFwMYnL1xWo5 xXTJ89iH64YUaUR2V4trIPbjtQMYWwxiagZswJ4XfgeaFnFMFYAV2D9vO4BBjuWufK9fLSZXv9cv 8xzwDfCjK4P4j+nYh1KCfTSPq69cjQEO8G8C/x542AVxtAEacvkH7x1giOPxS8DbxSCmDvw7pPbt YhIT2D+QPwMHcU0yzymuttgTlJfjeXgxiCkeuM3x+A7sSawoRQINHI/9gT1ALVz7Xr9aTK5+r2cp DyzD/oYqLi3zIOyJszgJwf7HK4P9y+UnoL2LYonh8g/en0CE43Gk43lRiyHnVjBAV+DrogslSwxX xjQLqIfrkjlcGddM4BbXhPL/7dw9aNRwHMbx70ELWs5JEHXQdOkmWungUKhIhwpCN1/xdXCtDoq4 6JOMo4QAAAJ8SURBVOSqiy5WRB06CYcKIoib4KJXKIiDWGuLSkHEt0EcdHiSJr3rIUWbX4bnA6FJ lj70fpf8X7sgYXGmCWBven6AmM+vqIG+b1Wo9UwDrRAsiqp1QMXdDwxRnYf5NrRb9SbwArgO9IQm kpPAN2AeuBOYI2HxF+9z4bzWcl2WhM4P8/vAwfKiLEhYnGkUuJyeV+lh3gQuAs9Qi3ig9ETtmTYD s8A7YA71aKIkwAywhmrUOuSZ6i33/1rrK/VfE/egB1OTf1/L/j91AduBa+nPH8C50ERag38KfYgb 0Yd4KDJQB7/ToyqqslmtB22iu1C4V5Wa70I9vh3AGdRSj3YDjQlvAk6jcfUIdeAuMIYaUkVRtV5H 83ljwPfC/dBav4TevtPAB/TQvB0RpMV6lCkzCDwIypLZB4wXrg8DV4OyJLQPs2Q7gDdQnWGWY8BT YFXZYVIJeaYtaJJvOj1+AW+BdcG5AB6innHmNbC2zEC0Z/paOK8BX0pNI93AI9SIykTX+lKZYBm1 vlIt8/Oo+9QL7AeeAEdW6Hctx0f0kulLr4fRDHKkV6jltBoV9zBaZVMF98gnY4+isbxoI6iVOUrn XcdlmkJjrb3pMYd6ffORoVIN8jHzPrQv5FNcHEAvlOwFswutHilTDfUOXgJXCvcja71TpqrVOkNU azXLVrQkqhLLfVJnyZcm3iJffVCmCeA96s7NAsfR2O9j4pYmtmY6gTarzaAhvCYaMovI9JP871T0 hpgx86VydaM5mCngObAzKFOxpgbQvNUk2mjYX3KmQbR8dJK8hkaIrfWlMu0mvtbNzMzMzMzMzMzM zMzMzMzMzMzMzMzMzMzMLNIf1QicDABfA2sAAAAASUVORK5CYII= \"></div>"
]
}
},
"selectedType": "Results",
"pluginName": "IPython",
"shellId": "DD17159096204C748D91BB5FF8019664",
"elapsedTime": 301,
"height": 399
},
"evaluatorReader": true,
"lineCount": 1
},
{
"id": "markdownM0Tj1i",
"type": "markdown",
"body": [
"Having kept reference we can get extra features of the data whe have."
],
"evaluatorReader": false
}
],
"namespace": {}
}