Skip to content
Snippets Groups Projects
Commit 63776b83 authored by Luca Massimiliano Ghiringhelli's avatar Luca Massimiliano Ghiringhelli
Browse files

Update metainfo.json

parent 7a3a5dce
No related branches found
No related tags found
No related merge requests found
...@@ -5,33 +5,34 @@ ...@@ -5,33 +5,34 @@
"Ghiringhelli, Luca M." "Ghiringhelli, Luca M."
], ],
"email": "leitherer@fhi-berlin.mpg.de", "email": "leitherer@fhi-berlin.mpg.de",
"title": "Hands-on tutorial: Regression using multilayer perceptrons", "title": "Introduction to multilayer perceptrons (deep neural networks)",
"description": "In this tutorial we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).", "description": "In this tutorial, we will use the ElemNet neural network architecture (https://github.com/NU-CUCIS/ElemNet) to predict the volume per atom of inorganic compounds, where the open quantum materials database (OQMD) is used as a resource (specifically, the data is taken from Ward et. al., npj Comput. Mater. 2, 16028 (2016)).",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template", "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb", "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb", "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/{tutorial}.ipynb",
"link_video": "https://www.youtube.com/watch?v=U0lI5n8Hleo", "link_video": "https://www.youtube.com/watch?v=U0lI5n8Hleo",
"updated": "2020-04-09", "updated": "2021-01-29",
"flags":{ "flags":{
"featured": true, "featured": true,
"top_of_list": false "top_of_list": false
}, },
"labels": { "labels": {
"application_keyword": [
"Neural networks / deep learning",
"Descriptors"
],
"application_section": [ "application_section": [
"Materials property prediction" "Materials property prediction"
], ],
"application_system": [ "application_system": [
"Inorganic compounds taken from the OQMD database" "Inorganic compounds",
"OQMD database"
], ],
"category": [ "category": [
"beginner_tutorial" "beginner_tutorial"
], ],
"data_analytics_method": [ "ai_methods": [
"Neural networks" "Supervised learning",
"Regression",
"Neural networks",
"Deep neural networks",
"Atomic features"
], ],
"platform": [ "platform": [
"jupyter" "jupyter"
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment