Skip to content
Snippets Groups Projects
Commit bc188cf3 authored by Luca Massimiliano Ghiringhelli's avatar Luca Massimiliano Ghiringhelli
Browse files

Update metainfo.json

parent 4b49b9b4
Branches
No related tags found
No related merge requests found
...@@ -3,41 +3,37 @@ ...@@ -3,41 +3,37 @@
"Liu, Xiangyue", "Liu, Xiangyue",
"Sutton, Christopher", "Sutton, Christopher",
"Yamamoto, Takenori", "Yamamoto, Takenori",
"Lysogorskiy, Yury",
"Blumenthal, Lars", "Blumenthal, Lars",
"Hammerschmidt, Thomas",
"Golebiowski, Jacek", "Golebiowski, Jacek",
"Ziletti, Angelo", "Ziletti, Angelo",
"Scheffler, Matthias", "Scheffler, Matthias",
"Ghiringhelli, Luca M." "Ghiringhelli, Luca M."
], ],
"email": "ghiringhelli@fhi-berlin.mpg.de", "email": "ghiringhelli@fhi-berlin.mpg.de",
"title": "NOMAD 2018 Kaggle research competition", "title": "2018 NOMAD-Kaggle research competition",
"description": "In this tutorial, we will explore the best results of the NOMAD 2018 Kaggle research competition. The goal of this competition was to develop machine-learning models for the prediction of two target properties: the formation energy and the bandgap energy of transparent semiconducting oxides. The purpose of the modelling is to facilitate the discovery of new such materials and allow for advancements in (opto)electronic technologies", "description": "In this tutorial, we will explore the best results of the NOMAD 2018 Kaggle research competition. The goal of this competition was to develop machine-learning models for the prediction of two target properties: the formation energy and the bandgap energy of transparent semiconducting oxides. The purpose of the modelling is to facilitate the discovery of new such materials and allow for advancements in (opto)electronic technologies",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-kaggle-competition", "url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-kaggle-competition",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/kaggle_competition.ipynb", "link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/kaggle_competition.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/kaggle_competition.ipynb", "link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/kaggle_competition.ipynb",
"link_paper": "https://th.fhi.mpg.de/site/uploads/Publications/s41524-019-0239-3.pdf", "link_paper": "https://th.fhi.mpg.de/site/uploads/Publications/s41524-019-0239-3.pdf",
"updated": "2020-02-06", "updated": "2021-01-19",
"flags":{ "flags":{
"featured": true, "featured": true,
"top_of_list": false "top_of_list": false
}, },
"labels": { "labels": {
"application_keyword": [
"Formation energy prediction",
"Band gap energy prediction"
],
"application_section": [ "application_section": [
"Timely artificial-intelligence applications to Materials Science" "Timely artificial-intelligence applications to Materials Science"
], ],
"application_system": [ "application_system": [
"Group-III oxidess" "Transparent conducting oxides"
], ],
"category": [ "category": [
"advanced_tutorial" "advanced_tutorial"
], ],
"data_analytics_method": [ "ai_methods": [
"Supervised learning",
"Regression"
"Kernel ridge regression", "Kernel ridge regression",
"Neural networks", "Neural networks",
"SOAP", "SOAP",
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment