"# Data Browser: Analyzing the Curated Reference Data Set\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"hidden": true
},
"metadata": {},
"source": [
"<div style=\"max-width: 900px;\">\n",
"<p>The next cells allow to inspect the deviations occurring in total and relative energy as function of the numerical settings.</p><br>\n",
...
...
@@ -800,7 +862,6 @@
{
"cell_type": "markdown",
"metadata": {
"hidden": true,
"init_cell": true
},
"source": [
...
...
@@ -828,7 +889,6 @@
"cell_type": "code",
"execution_count": 7,
"metadata": {
"hidden": true,
"init_cell": true,
"tags": [
"startup"
...
...
@@ -1721,7 +1781,6 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"tags": [
"exe_cell"
]
...
...
@@ -1882,7 +1941,6 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"tags": [
"ptablecell"
]
...
...
@@ -1959,18 +2017,14 @@
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true
},
"metadata": {},
"source": [
"# Estimate Error for Binary Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"hidden": true
},
"metadata": {},
"source": [
"<div style=\"max-width: 900px;\">\n",
"<p>The next cells allow to inspect models to predict the deviations occuring in total and relative energy as function of the numerical settings.</p><br>\n",
...
...
@@ -1982,9 +2036,7 @@
},
{
"cell_type": "markdown",
"metadata": {
"hidden": true
},
"metadata": {},
"source": [
"<details>\n",
" <summary>\n",
...
...
@@ -2004,7 +2056,6 @@
"cell_type": "code",
"execution_count": 8,
"metadata": {
"hidden": true,
"init_cell": true,
"tags": [
"startup"
...
...
@@ -2437,7 +2488,6 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"tags": [
"exe_cell_estimate"
]
...
...
@@ -2604,18 +2654,14 @@
},
{
"cell_type": "markdown",
"metadata": {
"heading_collapsed": true
},
"metadata": {},
"source": [
"# Estimate Error for Arbitrary Systems"
]
},
{
"cell_type": "markdown",
"metadata": {
"hidden": true
},
"metadata": {},
"source": [
"<div style=\"max-width: 900px;\">\n",
"<p>The next cells allow to estimate the deviations occurring in total and relative energy as function of the numerical settings for arbitrary systems using the formalism discussed in the previous section.</p><br>\n",
...
...
@@ -2628,7 +2674,6 @@
{
"cell_type": "markdown",
"metadata": {
"hidden": true,
"init_cell": true
},
"source": [
...
...
@@ -2651,7 +2696,6 @@
"cell_type": "code",
"execution_count": 9,
"metadata": {
"hidden": true,
"init_cell": true,
"tags": [
"startup"
...
...
@@ -3174,7 +3218,6 @@
"cell_type": "code",
"execution_count": null,
"metadata": {
"hidden": true,
"tags": [
"process_formula_cell"
]
...
...
%% Cell type:code id: tags:
``` python
%%HTML
<script>
window.findCellIndicesByTag = function findCellIndicesByTag(tagName) {
<div id="teaser" style=' background-position: right center; background-size: 00px; background-repeat: no-repeat;
padding-top: 20px;
padding-right: 10px;
padding-bottom: 170px;
padding-left: 10px;
border-bottom: 14px double #333;
border-top: 14px double #333;' >
<div style="text-align:center">
<b><font size="6.4">Error estimates from high-accuracy electronic structure reference calculations</font></b>
</div>
<p>
<b> Notebook designed and created by:</b> Björn Bieniek, Mikkel Strange, Christian Carbogno, Mohammad-Yasin Arif, Luigi Sbailò, and Matthias Scheffler. <i>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany</i><br> <br>
<b> Curated ab initio data: </b>
Elisabeth Wruss, and Oliver T. Hofmann. <i>Institute of Solid State Physics, Graz University of Technology, NAWI Graz, Petergasse 16, 8010 Graz, Austria</i><br>
Mikkel Strange, and Kristian Sommer Thygesen. <i>CAMD, Department of Physics, Technical University of Denmark. Fysikvej 1 2800 Kgs. Lyngby, Denmark</i><br>
Sven Lubeck, and Andris Gulans. <i>Humboldt-Universität zu Berlin, Department of Physics, Zum Grossen Windkanal 6, D-12489 Berlin</i><br>
Björn Bieniek, and Christian Carbogno. <i>Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany</i></p>
<span class="nomad--last-updated" data-version="v1.0.0">[Last updated: July 1, 2020]</span>
var txt1 = document.getElementById("init_txt1"); txt1.innerHTML = '';
var txt2 = document.getElementById("init_txt2"); txt2.innerHTML = '';
}
UpdateInit_txt();
</script>
```
%% Output
%% Cell type:markdown id: tags:
# Introduction
%% Cell type:markdown id: tags:
<div style="max-width: 900px;">Electronic-structure theory has become an invaluable tool in materials science. Still, the precision of different approaches has only recently been scrutinized thoroughly (for the PBE functional) using extremely accurate numerical settings [1]. A synergistic effort showed that "most recent codes and methods converge toward a single value", if extremely accurate and computationally expensive numerical settings
are employed. Little is known, however, about code- and method-specific deviances and errors that arise under numerical settings commonly used in actual calculations. <br><br>
In this notebook, we use the NOMAD infrastructure to shed light on this issue by systematically investigating and analyzing the deviances in total and relative energies as function of typical settings for basis sets, k-grids, etc. For this purpose, the NOMAD team has systematically computed the properties of 71 elemental [1] and 81 binary solids in three different electronic-structure codes using various different computational settings, including extremely accurate ones that constitute a fully converged reference.<br><br>
On one hand, this allows to analyze and compare the convergence behavior of different codes with respect to different settings. On the other hand, this allows to develop models
to estimate the errors in calculations for which no highly converged reference is available. As an example, we here discuss the following function
that is used to estimate and predict the (total energy and relative energy) errors in binary systems from the high-accuracy calculations performed for the elemental solids. Here, $N_A$ and $N_B$ denote the number of atoms of species A and B
in the binary system and $\Delta E_{A} $ and $ \Delta E_{B}$ occurring in the respective elemental solids.</div>
<br><br>
<div style="max-width: 900px;">
<b>[1]</b> K. Lejaeghere et al., Science 351 (2016).<br>
<b>[2]</b> Reference for calculations: http://dx.doi.org/10.17172/NOMAD/2017.01.24-1 (https://nomad-repository.eu.)
A. M. Antyukhov. The Vegard Law in the case of solid solutions of the InP-InAs system. Inorganic Materials 22, (1986): 426-428. <br>
[3]
V. G., Artjushenko, P. B. Baskov, V. F. Golovanov, G. M. Kuz’micheva, I. S. Lisitskii, M. D. Musina, G. V. Polyakova, V. V. Sakharov, and T. V. Sakharova. Synthesis and structural properties of AgCl(1-x)Br(x) (x= 0.5-0.8) solid solutions. Inorganic materials 41 (2005): 73-81. <br>
[4]
H. Baaziz, Z. Charifi, F. El Haj Hassan, S. J. Hashemifar, and H. Akbarzadeh. FP-LAPW investigations of Zn(1-x)Be(x)S, Zn(1-x)Be(x)Se and Zn(1-x)Be(x)Te ternary alloys. physica status solidi (b), 243(6):1296–1305, 2006. <br>
[5]
Z. Barnea and B. Post. Debye-Waller factors of cesium chloride. Acta Crystallographica, 21(1):181–182, Jul 1966. <br>
[6]
C. A. Barrett and E. B. Evans. Solid solubility and lattice parameter of NiO-MnO. Journal of the American Ceramic Society, 47(10):533–533, 1964. <br>
[7]
W. T. Barrett and W. E. Wallace. Studies of NaCl-KCl solid solutions. i. heats of formation, lattice spacings, densities, Schottky defects and mutual solubilities. Journal of the American Chemical Society, 76(2)366–369, 1954. <br>
[8]
J.L. Baudour, M.M. Granger, L. Toupet, R. Granger, and R. Triboulet. Composition dependence of thermal vibrations in Hg(1-x)Zn(x)Te solid solutions determined by x-ray diffraction. Journal of Physics and Chemistry of Solids, 50(3):309 – 318, 1989. <br>
[9]
A.M. Bolarn, F. Sánchez, S. Palomares, J.A. Aguilar, and G. Torres-Villaseñor. Synthesis of calcium doped lanthanum manganite by mechanosynthesis. Journal of Alloys and Compounds, 436(12):335 – 340, 2007. <br>
[10]
A. A. Bolzan, C. Fong, B. J. Kennedy, and C. J. Howard. Structural Studies of Rutile-Type Metal Dioxides. Acta Crystallographica Section B, 53(3):373–380, Jun 1997. <br>
[11-12]
R.C. Brown and N.J. Clark. Composition limits and vaporization behaviour of rare earth nitrides. Journal of Inorganic and Nuclear Chemistry, 36(11):2507 – 2514, 1974. <br>
[13]
J. D. Browne, P. R. Liddell, R. Street, and T. Mills. An investigation of the antiferromagnetic transition of CrN. physica status solidi (a), 1(4):715–723, 1970. <br>
[14]
L. D. Brownlee. The pseudo-binary systems of uranium carbide with zirconium carbide, tantalum carbide and niobium carbide. J. Inst. Metals 87 (1958). <br>
[15]
S.R. Butler and J.L. Gillson. Crystal growth, electrical resistivity and lattice parameters of RuO2 and IrO2. Materials Research Bulletin, 6(2):81 – 89, 1971. <br>
[16]
N. M. Butt, K. D. Rouse, M. W. Thomas, and B. T. M. Willis. Debye–Waller factors of KBr at 4.2 and 295 K. Acta Crystallographica Section A, 34(6):840–842, Nov 1978. <br>
[17]
T. Chattopadhyay, J. Pannetier, and H.G. Von Schnering. Neutron diffraction study of the structural phase transition in SnS and SnSe. Journal of Physics and Chemistry of Solids, 47(9):879 – 885, 1986. <br>
[18]
Xiang-Rong Chen, Xiao-Feng Li, Ling-Cang Cai, and Jun Zhu. Pressure induced phase transition in ZnS. Solid State Communications, 139(5):246 – 249, 2006. <br>
[19]
T. D. Chikalla, C. E. McNeilly, and F. P. Roberts. Polymorphic modifications of Pm2O3. Journal of the American Ceramic Society, 55(8):428–428, 1972. <br>
[20]
H. R. Child, M. K. Wilkinson, J. W. Cable, W. C. Koehler, and E. O. Wollan. Neutron diffraction investigation of the magnetic properties of compounds of rare-earth metals with group V anions. Phys. Rev., 131:922–931,
Aug 1963. <br>
[21-22]
A. Cimino and M. Marezio. Lattice parameter and defect structure of cadmium oxide containing foreign atoms. Journal of Physics and Chemistry of Solids 17, no. 1-2 (1960): 57-64. <br>
[23-34]
Pietro Cortona. Direct determination of self-consistent total energies and charge densities of solids: A study of the cohesive properties of the alkali halides. Phys. Rev. B, 46:2008–2014, Jul 1992. <br>
[25]
R.Lindsay Davis and Colin H.L. Kennard. Thermal parameters for lithium halides. Journal of Solid State Chemistry, 64(2):217 – 219, 1986. <br>
[26]
Suraj Deore, Fen Xu, and Alexandra Navrotsky. Oxide-melt solution calorimetry of selenides: Enthalpy of formation of zinc, cadmium, and lead selenide. American Mineralogist, 93(5-6):779–783, 2008. <br>
[27]
V. T. Deshpande and D. B. Sirdeshmukh. Thermal expansion of ammonium bromide, rubidium bromide and rubidium chloride. Acta Crystallographica, 14(4):353–355, Apr 1961. <br>
[28]
P. Deus, U. Voland, and H. A. Schneider. Thermal expansion of gap within 20 to 300 K. physica status solidi (a), 80(1):K29–K32, 1983. <br>
[29]
Fritz Ebert and Hans Woitinek. Kristallstrukturen von fluoriden. ii. HgF, HgF2, CuF und CuF2. Zeitschrift für anorganische und allgemeine Chemie, 210(3):269, 1933. <br>
[30]
Efrain E. Rodriguez, Frederic Poineau, Anna Llobet, Alfred P. Sattelberger, Joydeep Bhattacharjee, Umesh V. Waghmare, Thomas Hartmann, , and Anthony K. Cheetham. Structural studies of TcO2 by neutron powder diffraction and first-principles calculations. Journal of the American Chemical Society, 129(33):10244, 2007. <br>
[31-36]
Peter Ettmayer, Johann Waldhart, Alfred Vendl, and Gerhard Banik. Über die mischbarkeit von ThC mit LaN, CeN, PrN, NdN, SmN, GdN und ErN. Monatshefte für Chemie / Chemical Monthly, 111(5):1185, 1980. <br>
[37]
C.M. Fang and G. de With. Crystal structure and chemical bonding of the high-pressure phase of MgAl2O4 from first-principles calculations. Philosophical Magazine A 82(15):2885, OCT 2002. <br>
[38]
Boniface P.T. Fokwa, Patrick R.N. Misse, Michael Gilleßen, and Richard Dronskowski. Sn-flux syntheses, characterizations and bonding analyses of OsB and TiB2. Journal of Alloys and Compounds, 489(2):339 – 342, 2010. <br>
[39]
R. J. Gambino, R. R. Ruf, T. R. McGuire, and P. Fumagalli. Magnetic, magnetooptic, and transport properties of Tb-doped EuS films. Journal of Applied Physics, 70(10):6386–6388, 1991. <br>
[40]
J. Gatterer, G. Dufek, P. Ettmayer, and R. Kieffer. Das kubische Tantalmononitrid (B 1-Typ) und seine Mischbarkeit mit den isotypen Übergangsmetallnitriden und-carbiden. Monatshefte für Chemie / Chemical Monthly,
106(5):1137–1147, 1975. <br>
[41]
V. Geist and C. Ascheron. The proton-induced kossel effect and its application to crystallographic studies. Crystal Research and Technology, 19(9):1231, 1984. <br>
[42]
Yun-Dong Guo, Xin-Lu Cheng, Li-Ping Zhou, Zi-Jiang Liu, and Xaing-Dong Yang. First-principles calculation of elastic and thermodynamic properties of MgO and SrO under high pressure. Physica B: Condensed Matter,
373(2):334 – 340, 2006. <br>
[43]
H. Hirsch, A. Decugnac, M. C. Gadet, and J. Pouradier. Cristallographie du sulfure aureux. Comptes rendus hebdomadaries des seances de l'Academie des sciences Serie B 263: 1328, 1966 . <br>
[44]
E. F. Hockings, I. Kudman, T. E. Seidel, C. M. Schmelz, and E. F. Steigmeier. Thermal and electrical transport in InAs-GaAs alloys. Journal of Applied Physics, 37(7):2879–2887, 1966. <br>
[45]
H. Holleck and E. Smailos. Mischnitride von thorium mit seltenen erden. Journal of Nuclear Materials, 91(1):237 – 239, 1980. <br>
[46]
Qianku Hu, Qinghua Wu, Yanming Ma, Lijun Zhang, Zhongyuan Liu, Julong He, Hong Sun, Hui-Tian Wang, and Yongjun Tian. First-principles studies of structural and electronic properties of hexagonal Bc5. Phys. Rev. B, 73:214116, Jun 2006. <br>
[47]
F. Hulliger and G.W. Hull Jr. Superconductivity in rocksalt-type compounds. Solid State Communications, 8(17):1379 – 1382, 1970. <br>
[48]
F. Hund and R. Fricke. Der kristallbau von alpha-BiF3. Zeitschrift für anorganische Chemie, 258(3-5):198, 1949. <br>
[49]
R.J Iwanowski, K Fronc, W Paszkowicz, and M Heinonen. XPS and XRD study of crystalline 3C-SiC grown by sublimation method. Journal of Alloys and Compounds, 286(12):143 147, 1999. <br>
[50]
Walter J. Moore Jr. and Linus Pauling. The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum. Journal of the American Chemical Society, 63(5):1392–1394, 1941. <br>
[51]
V Kanchana, G Vaitheeswaran, A Svane, and A Delin. First-principles study of elastic properties of CeO2, ThO2, and PoO2. Journal of Physics: Condensed Matter, 18(42):9615, 2006. <br>
[52]
Takashi Katsura, Bunji Iwasaki, Shigeyuki Kimura, and Syuniti Akimoto. High-pressure synthesis of the stoichiometric compound FeO. The Journal of Chemical Physics, 47(11):4559–4560, 1967. <br>
[53]
Helmuth Klesnar and Peter Rogl. Phase relations in the ternary systems NdBN, SmBN, and GdBN. Journal of the American Ceramic Society, 75(10):2825–2827, 1992. <br>
[54]
B. R. Lawn. The thermal expansion of silver iodide and the cuprous halides. Acta Crystallographica, 17(11):1341–1347, Nov 1964. <br>
[55]
C.-H. Leung and L.H. Van Vlack. Solubility limits in binary (Ca,Mn) chalcogenides. Journal of the American Ceramic Society, 62(11-12):613–616, 1979. <br>
[56]
V. Leute, A. Behr, C. Hünting, and H.M. Schmidtke. Phase diagram and diffusion properties of the quasi-binary system (Sn,Pb)S. Solid State Ionics, 68(34):287 – 294, 1994. <br>
[57]
D.X. Li, A. Oyamada, K. Hashi, Y. Haga, T. Matsumura, H. Shida, T. Suzuki, T. Kasuya, A. Dönni, and F. Hulliger. Study of physical properties of Yb-monopnictides. Journal of Magnetism and Magnetic Materials, 140144, Part 2:1169 – 1170, 1995. International Conference on Magnetism. <br>
[58]
Tieyu Lv, Deyan Chen, and Meichun Huang. Quasiparticle band structures of BaO and BaS. Journal of Applied Physics, 100(8), 2006. <br>
[59]
D. R. McCann, L. Cartz, R. E. Schmunk, and Y. D. Harker. Compressibility of hexagonal selenium by x-ray and neutron diffraction. Journal of Applied Physics, 43(4):1432, 1972. <br>
[60]
Olaf Muller and Rustum Roy. Formation and stability of the platinum and rhodium oxides at high oxygen pressures and the structures of pt3o4, -pto2 and rho2. Journal of the Less Common Metals, 16(2):129 – 146, 1968. <br>
[61]
T. Müürsepp and A. Haav. X-ray diffraction study of the systems TlI-CsI, TlI-RbI, and TlI-TlCl. Physica Status Solidi (a), 21(2):K81–K83, 1974. <br>
[62]
Kazumasa Nakamura and Masatomo Yashima. Crystal structure of NaCl-type transition metal monocarbides {MC} (M = V, Ti, Nb, Ta, Hf, Zr), a neutron powder diffraction study. Materials Science and Engineering: B, 148(13):69, 2008. First International Conference on the Science and Technology for Advanced Ceramics (STAC) in conjunction with the Second International Conference on Joining Technology for new Metallic Glasses and Inorganic Materials (JTMC). <br>
[63]
G. Neumann, R. Kieffer, and P. Ettmayer. Über das system TiC-TiN-Tio. Monatshefte für Chemie / Chemical Monthly, 103(4):1130–1137, 1972. <br>
[64]
Katharine Page, Jun Li, Robert Savinelli, Holly N. Szumila, Jinping Zhang, Judith K. Stalick, Thomas Proffen, Susannah L. Scott, and Ram Seshadri. Reciprocal-space and real-space neutron investigation of nanostructured Mo2C and WC. Solid State Sciences, 10(11):1499 – 1510, 2008. <br>
[65-66]
N. Pessall, R.E. Gold, and H.A. Johansen. A study of superconductivity in interstitial compounds. Journal of Physics and Chemistry of Solids, 29(1):19, 1968. <br>
[67]
J. Pflüger, J. Fink, W. Weber, K. P. Bohnen, and G. Crecelius. Dielectric properties of TiC(x), TiN(x), VC(x), and VN(x) from 1.5 to 40 eV determined by electron-energy-loss spectroscopy. Phys. Rev. B, 30:1155–1163, Aug 1984. <br>
[68]
Efrain E. Rodriguez, Anna Llobet, Thomas Proffen, Brent C. Melot, Ram Seshadri, Peter B. Littlewood, and Anthony K. Cheetham. The role of static disorder in negative thermal expansion in ReO3. Journal of Applied Physics, 105(11), 2009. <br>
[69]
P Schobinger-Papamantellos, P Fischer, O Vogt, and E Kaldis. Magnetic ordering of neodymium monopnictides determined by neutron diffraction. Journal of Physics C: Solid State Physics, 6(4):725, 1973. <br>
[70]
N. Schönberg. The tungsten carbide and nickel arsenide structures. Acta Metallurgica 2: 427-432, 1954.<br>
[71]
GER Schulze. The crystal structure of radium fluoride. - Zeitschrift für Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie, 32(6):430, MAY 1936. <br>
[72]
J. Stoemenos, S. Kokkou, and N. A. Economou. On the superstructure of germanium telluride single crystalline films. physica status solidi (a), 13(1):265–275, 1972. <br>
[73]
R.S. Street and T.N. Waters. The UC/UN and ThC/ThN systems. Journal of the Less Common Metals, 5(3):295 – 297,1963. <br>
[74]
X.W. Sun, Z.J. Liu, Q.F. Chen, H.W. Lu, T. Song, and C.W. Wang. Heat capacity of ZnO with cubic structure at high temperatures. Solid State Communications, 140(5):219 – 224, 2006. <br>
[75]
N.C. Tombs and H.P Rooksby. Structure of Monoxides of some Transition Elements at Low Temperatures. Nature, 165(4194):442–443, mar 1950. 10.1038/165442b0. <br>
[76]
V. Valvoda. X-ray Debye temperatures of HfC and alpha-W2C. physica status solidi (a), 83(2):K123–K125, 1984. <br>
[77]
J. Waser, H. A. Levy, and S. W. Peterson. The structure of PdO. Acta Crystallographica, 6(7):661–663, Jul 1953. <br>
[78]
J.C. Woolley and D.G. Lees. Equilibrium diagrams with InSb as one component. Journal of the Less Common Metals, 1(3):192 – 198, 1959. <br>
[79]
Ralph W. G. Wyckoff and Eugen Posnjak. The crystal structures of the cuprous halides. Journal of the American Chemical Society, 44(1):30–36, 1922. <br>
[80]
W. H. Zachariasen. Crystal chemical studies of the 5f-series of elements. I. New structure types. Acta Crystallographica, 1(5):265–268, Nov 1948. <br>
[81]
W. Bruce Zimmerman. Lattice-constant dependence on isotopic composition in the Li(h, d) system. Phys. Rev. B, 5:4704–4707, Jun 1972. <br>
%% Cell type:markdown id: tags:
# Data Browser: Analyzing the Curated Reference Data Set
%% Cell type:markdown id: tags:
<div style="max-width: 900px;">
<p>The next cells allow to inspect the deviations occurring in total and relative energy as function of the numerical settings.</p><br>
The interface below allows you to explore the error due to numerical settings for the 71 elementary solids and the 82 binary systems. Use the drop-down menus to choose a code, a property, and the (code-specific) numerical settings; the <i>Add el. solids/binaries</i> buttons then generate the plots. The upper plots show the errors (deviations) with respect to highly converged settings for the elemental solids (left) and binaries (right). For the elemental solids, an additional, color-coded periodic table is shown below. The color of the elements relates to the error.<br><br>
Click on <i>Instructions</i> for further details and explanations.
The settings available for all 4 electronic structure codes are the choice of the <i>exchange-correlation (XC) functional</i> and the <i>k-point density</i>. The choices for the XC-functional are a parametrization of the local densiy approximation (LDA) and the general gradient approximation xc-functional PBE (Perdew-Berke-Enzerhoff). For further details the reader is referred to the literature. The k-point density gives the number of k-points per inverse Angstrom used to sample the Brillouin-Zone.<br>
Due to the different methods used in the codes additional numerical settings are required.<br>
<b>GPAW</b>: <i>Plain Wave (PW) cutoff</i> in eV. For further details see: <a href="https://wiki.fysik.dtu.dk/gpaw/documentation/manual.html">GPAW manual</a> <br>
<!-- <b>VASP</b>: <i>Precision settings</i>, that include pseudo-potential and plain wave cutoff, For further details see: <a href="https://cms.mpi.univie.ac.at/wiki/index.php/Main_page">VASP manual</a> <br> -->
<b>FHI-aims</b>: The density of the integration grid used for the numerically tabulated atomic orbitals are selected by <i> Integration grid</i>. The number of atom centered basis function is selected by <i>Tiers</i>. Additionally two choices for the treatment of relativistic effects are available with <i>Relativity treatment</i>. For more details see: <a href="https://aimsclub.fhi-berlin.mpg.de/">Aims club</a><br>
<b>exciting:</b> <i>Precision</i> describes the basis set size using the computational parameter <i>rgkmax</i> (see <a href="http://exciting-code.org/documentation">exciting documentation</a>). <i>Precision = rgkmax/rgkmax<sub>norm</sub></i>, where <i>rgkmax<sub>norm</sub></i> is chosen to be the <i>rgkmax</i>-value which results in an error of 10<sup>-4</sup> eV in total energy per atom. <br>
It is possible to inspect errors/deviations in total energy, relative energy, and cohesive energy (Drop down menu <i>Quantity</i>). Relative energies
are computed as a total energy difference with respect to a cell volume increase of 5%. This allows to explore the effect of error cancellation. Additionally you can explore the error in the cohesive energy for the binary systems. We define the cohesive energy as the total energy of the binary systems minus the the total energy of its constituents in their elemental solid structure, divided by the number of atoms in the binary cell.
<br><br>
The settings for the reference calculations are:<br>
<!-- -VASP: 8 k-points·Å, Accurate<br> -->
-exciting: 8 k-points·Å, 90 % Precision<br>
-GPAW: 8 k-points·Å, 1600eV (PW cutoff)<br>
-FHI-aims: 8 k-points·Å, really tight, tier2<br>
</div>
%% Cell type:code id: tags:startup
``` python
%%html
<script>
var kernel = Jupyter.notebook.kernel;
// Adds an option to a dropdown menu
function addDropdownChoice(dropdown, value, content) {
var el = document.createElement('option');
el.value = value;
el.innerHTML = content
dropdown.appendChild(el);
}
// Adds an option to a dropdown menu with selection
function addDropdownChoice_selection(dropdown, value, content, selected) {
var el = document.createElement('option');
el.value = value;
el.innerHTML = content
el.selected = selected
dropdown.appendChild(el);
}
function errorUpdateForm() {
var code = document.getElementById("error_estimates_code").value;
var kpt = document.getElementById("error_estimates_kdensity");
var dprec = document.getElementById("error_estimates_precision_name");
var dtiers = document.getElementById("error_estimates_tiers_name");
var pprec = document.getElementById("error_estimates_precision"); pprec.innerHTML = '';
var prel = document.getElementById("error_estimates_relativity"); prel.innerHTML = '';
var ptiers = document.getElementById("error_estimates_tiers"); ptiers.innerHTML = '';
var pxc = document.getElementById("error_estimates_xcfunctional"); pxc.innerHTML = '';
var pplot = document.getElementById("error_estimates_quantity"); pplot.innerHTML = '';
var baddbins = document.getElementById("btn_addbins");
var bclbins = document.getElementById("btn_clearbins");
var bcllbins = document.getElementById("btn_clearlastbins");
ax.text(0.5,1.3,'Last data set of elemental solids: '+xylist[len(xylist)-1][1],size=20,horizontalalignment='center',
verticalalignment='center',
fontsize=20, color='k',
transform=ax.transAxes)
fig.show()
```
%% Cell type:markdown id: tags:
# Estimate Error for Binary Systems
%% Cell type:markdown id: tags:
<div style="max-width: 900px;">
<p>The next cells allow to inspect models to predict the deviations occuring in total and relative energy as function of the numerical settings.</p><br>
In the left plot the data for the 82 binary system is visualized in the same way as above. In the right plot the error for the binary systems is estimated from the error of the elementary systems by the formula presented in the introduction. It is plotted against the error obtained directly from the DFT calculations of the binary systems. <br><br>
Click on <i>Instructions</i> for further details and explanations.
The general and code specific numerical settings are briefly explained in the instructions of the previous sections. Due to the nature of the of the error the formalism presented in the introduction is not sufficient to describe the error in the k-point sampling. All other setting are the same as in the previous section.
<br><br>
The settings for the reference calculations are:<br>
fig.suptitle('Observed/estimated error for binary systems')
# Show
fig.show()
```
%% Cell type:markdown id: tags:
# Estimate Error for Arbitrary Systems
%% Cell type:markdown id: tags:
<div style="max-width: 900px;">
<p>The next cells allow to estimate the deviations occurring in total and relative energy as function of the numerical settings for arbitrary systems using the formalism discussed in the previous section.</p><br>
Enter the formula of a specific system and calculate the error for a set of numerical settings from the results of the elementary solids with respect to a well converged reference,. The numerical settings and the electronic structure code can be selected in the input mask below.<br><br>
Click on <i>Instructions</i> for further details and explanations.
The minimum error, estimated from the el. solids, which is considered meaningful is 10 meV. This is the lower bound for the output below. As the determination of the estimated error is based on the set of elemental solids only the error of systems consisting of those elements can be calculated. A list of these elements can be found in the elemental solids section of the introduction. The numerical settings are briefly explained in the instructions of the section <i>Data Browser: Analyzing the Curated Reference Data Set</i>.<br><br>
The settings for the reference calculations are:<br>