Skip to content
Snippets Groups Projects
Commit e2c28d3d authored by Luca Massimiliano Ghiringhelli's avatar Luca Massimiliano Ghiringhelli
Browse files

Update metainfo.json

parent efd09cd7
Branches
Tags
No related merge requests found
......@@ -4,35 +4,34 @@
],
"email": "langer@fhi-berlin.mpg.de",
"title": "cmlkit: Toolkit for Machine Learning in Computational Condensed Matter Physics and Quantum Chemistry",
"description": "In this tutorial we will get to know cmlkit, a python package for specifying, evaluating, and optimising machine learning models, and use it to compete in the Nomad 2018 Kaggle challenge.",
"description": "In this tutorial, we will get to know cmlkit, a python package for specifying, evaluating, and optimising machine learning models, and use it to compete in the Nomad 2018 Kaggle challenge.",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-cmlkit",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/cmlkit.ipynb",
"link_public": "https://analytics-toolkit.nomad-coe.eu/public/user-redirect/notebooks/tutorials/cmlkit.ipynb",
"link_paper": "https://arxiv.org/abs/2003.12081",
"updated": "2020-03-26",
"updated": "2021-01-14",
"flags":{
"featured": true,
"top_of_list": false
},
"labels": {
"application_keyword": [
"Formation energy prediction"
],
"application_section": [
"Tutorials for artificial-intelligence methods"
],
"application_system": [
"Group-III oxides"
"Transparent conducting oxides"
],
"category": [
"intermediate_tutorial"
"advanced_tutorial"
],
"data_analytics_method": [
"ai_methods": [
"Supervised learning",
"Regression",
"Kernel ridge regression",
"SOAP",
"MBTR",
"Symmetry Functions"
"Symmetry functions"
],
"platform": [
"jupyter"
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment