Skip to content
Snippets Groups Projects
Commit 9fe475c7 authored by Marcel Langer's avatar Marcel Langer
Browse files

Init

parent 20ec35db
No related branches found
No related tags found
No related merge requests found
.envrc
.ipynb_checkpoints
\ No newline at end of file
# analytics-tutorial-cmlkit
Tutorial for [`cmlkit`](https://github.com/sirmarcel/cmlkit).
\ No newline at end of file
Tutorial for [`cmlkit`](https://github.com/sirmarcel/cmlkit).
In addition to the prerequisites in `setup.py`, this tutorial requires [`qmmlpack`](https://gitlab.com/qmml/qmmlpack/-/tree/development) on the DEVELOPMENT branch.
It also requires the environment variables `CML_PLUGINS=cscribe` and `CML_DATASET_PATH=data/` to be set.
\ No newline at end of file
# Ignore everything in this directory
*
# Except this file
!.gitignore
\ No newline at end of file
This diff is collapsed.
# Ignore everything in this directory
*
# Except this file
!.gitignore
\ No newline at end of file
{
"authors": [
"Langer, Marcel"
],
"email": "langer@fhi-berlin.mpg.de",
"title": "cmlkit tutorial",
"description": "In this tutorial we will get to know cmlkit, a python package for specifying, evaluating, and optimising machine learning models, and use it to compete in the Nomad 2018 Kaggle challenge.",
"url": "https://gitlab.mpcdf.mpg.de/nomad-lab/analytics-tutorial-template",
"link": "https://analytics-toolkit.nomad-coe.eu/hub/user-redirect/notebooks/tutorials/Welcome.ipynb",
"created": "",
"updated": "",
"flags":{
"isPublic": false,
"featured": false,
"top_of_list": false
},
"labels": {
"application_keyword": [
"Formation energy prediction"
],
"application_section": [
"Materials property prediction"
],
"application_system": [
"Group-III oxidess"
],
"category": [
"Tutorial"
],
"data_analytics_method": [
"Kernel ridge regression",
"SOAP",
"MBTR",
"Symmetry Functions",
],
"platform": [
"jupyter"
]
}
}
\ No newline at end of file
This diff is collapsed.
### Status of run nmd18_hpo at 2020-02-24 12:28:46 ###
nmd18_hpo: Done. Have a good day! Runtime: 1918.8/inf. Active evaluations: 0.
Counted trials: 400/400.
Best 3: 0.0240 0.0244 0.0256. Live: 41/T: 400 (378)/E: 306 (287).
{'QMMLException': 22}
model:
per: cell
regression:
krr:
kernel:
kernel_atomic:
kernelf:
gaussian:
ls: 32.0
norm: false
nl: 0.00048828125
representation:
ds_soap:
cutoff: 8
elems: [8, 13, 31, 49]
l_max: 8
n_max: 3
rbf: gto
sigma: 0.25
model:
per: cell
regression:
krr:
kernel:
kernel_atomic:
kernelf:
gaussian:
ls: 8.0
norm: false
nl: 0.03125
representation:
ds_soap:
cutoff: 7
elems: [8, 13, 31, 49]
l_max: 7
n_max: 5
rbf: gto
sigma: 0.25
model:
per: cell
regression:
krr:
kernel:
kernel_atomic:
kernelf:
gaussian:
ls: 64.0
norm: false
nl: 0.03125
representation:
ds_soap:
cutoff: 7
elems: [8, 13, 31, 49]
l_max: 6
n_max: 5
rbf: gto
sigma: 0.5
model:
per: cell
regression:
krr:
kernel:
kernel_atomic:
kernelf:
gaussian:
ls: 2048.0
norm: false
nl: 3.814697265625e-06
representation:
ds_soap:
cutoff: 3
elems: [8, 13, 31, 49]
l_max: 7
n_max: 6
rbf: gto
sigma: 1.0
model:
per: cell
regression:
krr:
kernel:
kernel_atomic:
kernelf:
gaussian:
ls: 512.0
norm: false
nl: 0.0078125
representation:
ds_soap:
cutoff: 10
elems: [8, 13, 31, 49]
l_max: 5
n_max: 6
rbf: gto
sigma: 0.5
This diff is collapsed.
setup.py 0 → 100644
import json
from setuptools import setup, find_packages
with open('metainfo.json') as file:
metainfo = json.load(file)
setup(
name='tutorial_cmlkit',
version='0.1',
author=', '.join(metainfo['authors']),
author_email=metainfo['email'],
url=metainfo['url'],
description=metainfo['title'],
long_description=metainfo['description'],
packages=find_packages(),
install_requires=['cmlkit', 'cscribe'],
)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment