Skip to content
Snippets Groups Projects
Commit f3ab487c authored by Niclas Esser's avatar Niclas Esser
Browse files

Add required sphinx packages

parent 9c6ecb4d
No related branches found
No related tags found
1 merge request!5Doc
Pipeline #214714 failed
......@@ -76,7 +76,7 @@ pages:
image: python:3.9
stage: doc
before_script:
- pip3 install sphinx==7.2.6 networkx==2.5 sphinxcontrib-apidoc==0.5.0 sphinx-rtd-theme==2.0.0 Jinja2==3.0.3 recommonmark==0.6.0 nbsphinx==0.9.3 nbconvert==6.4.3 sphinxcontrib-napoleon==0.7 sphinx-autoapi==3.0.0
- pip3 install sphinx==7.2.6 networkx==2.5 sphinxcontrib-apidoc==0.5.0 sphinx-rtd-theme==2.0.0 Jinja2==3.0.3 recommonmark==0.6.0 nbsphinx==0.9.3 nbconvert==6.4.3 sphinxcontrib-napoleon==0.7 sphinx-autoapi==3.0.0 graphviz ipython==7.20.0 json_schema_for_humans==0.40.3 --break-system-packages
script:
- mkdir public
- make -C doc/ html
......
......@@ -2,7 +2,16 @@
This repository contains the `pafsim` python module. The module implements various PAF backend components such as Correlator, Beamforer, Calibrator etc. The purpose of this module is a comprehensive simulation tool for PAF backends which may act like a "golden reference" for real world PAFs.
## Install
The project is managed by the `pyproject.toml`-file. Hence, an installation with `pip` is the preffered way.
It is recommended to create a virtual environment before installing the packaged.
`python -m venv /path/to/venv/`
Activate the venv by
`source /path/to/venv/bin/activate`
The project is managed by the `pyproject.toml`-file. Hence, an installation with `pip` is the prefered way.
Clone the repo:
`git clone https://gitlab.mpcdf.mpg.de/nesser/pafsim && cd pafsim`
......@@ -11,15 +20,12 @@ Then install it with
`pip install .`
## Usage
All required dependencies are resolved.
## Documentation
The API documentation and user guide can be found [here]().
The repository contains a comprehensive jupyter notebook on how to use the `pafsim` module. It can be found in the `example` folder.
## Contact
Niclas Esser - <nesser@mpifr-bonn.mpg.de>
## ToDo
- Scalability and performance with `Dask` and `cupy`
- Telescope and receiver simulation
- Evaluation metric
- Addtional processing algorithms
- Addtional processors (Synthesis Filter, Digital Downconverter, etc.)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment