-
Martin Reinecke authoredMartin Reinecke authored
test_totalconvolve.py 3.33 KiB
import numpy as np
import pytest
from numpy.testing import assert_
import ducc_0_1.totalconvolve as totalconvolve
import ducc_0_1.sht as sht
pmp = pytest.mark.parametrize
def _l2error(a, b):
return np.sqrt(np.sum(np.abs(a-b)**2)/np.sum(np.abs(a)**2))
def _assert_close(a, b, epsilon):
err = _l2error(a, b)
if (err >= epsilon):
print("Error: {} > {}".format(err, epsilon))
assert_(err<epsilon)
def nalm(lmax, mmax):
return ((mmax+1)*(mmax+2))//2 + (mmax+1)*(lmax-mmax)
def random_alm(lmax, mmax, ncomp):
res = np.random.uniform(-1., 1., (nalm(lmax, mmax), ncomp)) \
+ 1j*np.random.uniform(-1., 1., (nalm(lmax, mmax), ncomp))
# make a_lm with m==0 real-valued
res[0:lmax+1,:].imag = 0.
return res
def convolve(alm1, alm2, lmax):
job = sht.sharpjob_d()
job.set_triangular_alm_info(lmax, lmax)
job.set_gauss_geometry(lmax+1, 2*lmax+1)
map = job.alm2map(alm1)*job.alm2map(alm2)
job.set_triangular_alm_info(0,0)
return job.map2alm(map)[0]*np.sqrt(4*np.pi)
def compress_alm(alm,lmax):
res = np.empty(2*len(alm)-lmax-1, dtype=np.float64)
res[0:lmax+1] = alm[0:lmax+1].real
res[lmax+1::2] = np.sqrt(2)*alm[lmax+1:].real
res[lmax+2::2] = np.sqrt(2)*alm[lmax+1:].imag
return res
def myalmdot(a1,a2,lmax,mmax,spin):
return np.vdot(compress_alm(a1,lmax),compress_alm(np.conj(a2),lmax))
@pmp("lkmax", [(13,13),(2,1),(30,15),(35,2)])
@pmp("ncomp", [1, 3])
@pmp("separate", [True, False])
def test_against_convolution(lkmax, ncomp, separate):
lmax, kmax = lkmax
slm = random_alm(lmax, lmax, ncomp)
blm = random_alm(lmax, kmax, ncomp)
inter = totalconvolve.PyInterpolator(slm, blm, separate, lmax, kmax,
epsilon=1e-8, nthreads=2)
nptg = 50
ptg = np.zeros((nptg,3))
ptg[:,0] = np.random.uniform(0, np.pi, nptg)
ptg[:,1] = np.random.uniform(0, 2*np.pi, nptg)
ptg[:,2] = np.random.uniform(-np.pi, np.pi, nptg)
res1 = inter.interpol(ptg)
blm2 = np.zeros((nalm(lmax,lmax), ncomp))+0j
blm2[0:blm.shape[0],:] = blm
res2 = np.zeros((nptg, ncomp))
for c in range(ncomp):
for i in range(nptg):
rbeam=totalconvolve.rotate_alm(blm2[:,c], lmax, ptg[i,2],ptg[i,0],ptg[i,1])
res2[i,c] = convolve(slm[:,c], rbeam, lmax).real
if separate:
_assert_close(res1, res2, 1e-7)
else:
_assert_close(res1[:,0], np.sum(res2,axis=1), 1e-7)
@pmp("lkmax", [(13,13),(2,1),(30,15),(35,2)])
@pmp("ncomp", [1, 3])
@pmp("separate", [True, False])
def test_adjointness(lkmax, ncomp, separate):
lmax, kmax = lkmax
slm = random_alm(lmax, lmax, ncomp)
blm = random_alm(lmax, kmax, ncomp)
nptg=100000
ptg=np.random.uniform(0.,1.,nptg*3).reshape(nptg,3)
ptg[:,0]*=np.pi
ptg[:,1]*=2*np.pi
ptg[:,2]*=2*np.pi
foo = totalconvolve.PyInterpolator(slm,blm,separate,lmax, kmax, epsilon=1e-6, nthreads=2)
inter1=foo.interpol(ptg)
ncomp2 = inter1.shape[1]
fake = np.random.uniform(0.,1., (ptg.shape[0],ncomp2))
foo2 = totalconvolve.PyInterpolator(lmax, kmax, ncomp2, epsilon=1e-6, nthreads=2)
foo2.deinterpol(ptg.reshape((-1,3)), fake)
bla=foo2.getSlm(blm)
v1 = np.sum([myalmdot(slm[:,c], bla[:,c], lmax, lmax, 0) for c in range(ncomp)])
v2 = np.sum([np.vdot(fake[:,c],inter1[:,c]) for c in range(ncomp2)])
_assert_close(v1, v2, 1e-12)