Skip to content
Snippets Groups Projects
Commit dde6d753 authored by Lucas Miranda's avatar Lucas Miranda
Browse files

Added latent regularization control to deepof.data.coordinates.deep_unsupervised_embedding()

parent 8aa53f03
No related branches found
No related tags found
No related merge requests found
Pipeline #93894 passed
......@@ -384,6 +384,7 @@ else:
predictor=predictor,
loss=loss,
logparam=None,
outpath=output_path,
)
best_hyperparameters, best_model = tune_search(
......@@ -412,6 +413,7 @@ else:
],
n_replicas=3,
n_epochs=30,
outpath=output_path,
)
# Saves the best hyperparameters
......
......@@ -474,6 +474,7 @@ def tune_search(
callbacks: List,
n_epochs: int = 30,
n_replicas: int = 1,
outpath: str = ".",
) -> Union[bool, Tuple[Any, Any]]:
"""Define the search space using keras-tuner and bayesian optimization
......@@ -544,7 +545,7 @@ def tune_search(
if hpt_type == "hyperband":
tuner = Hyperband(
directory="HyperBandx_{}_{}".format(loss, str(date.today())),
directory=os.path.join(outpath, "HyperBandx_{}_{}".format(loss, str(date.today()))),
max_epochs=35,
hyperband_iterations=hypertun_trials,
factor=2,
......@@ -552,7 +553,7 @@ def tune_search(
)
else:
tuner = BayesianOptimization(
directory="BayOpt_{}_{}".format(loss, str(date.today())),
directory=os.path.join(outpath, "BayOpt_{}_{}".format(loss, str(date.today()))),
max_trials=hypertun_trials,
**hpt_params
)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment