Commit 595b4b43 authored by lucas_miranda's avatar lucas_miranda
Browse files

renamed package folder from 'source' to 'deepof'

parent 62aa4197
...@@ -7,8 +7,8 @@ test_a: ...@@ -7,8 +7,8 @@ test_a:
stage: test stage: test
script: script:
- echo "Installing dependencies" - echo "Installing dependencies"
- pip install -r ./source/requirements.txt - pip install -r ./deepof/requirements.txt
- pip install -e ./source/ - pip install -e deepof/
- echo "Dependencies installed" - echo "Dependencies installed"
- echo "Testing all functions in deepof.utils" - echo "Testing all functions in deepof.utils"
- pytest - pytest
......
...@@ -12,7 +12,7 @@ from tensorflow.keras.layers import Dense, Dropout, LSTM ...@@ -12,7 +12,7 @@ from tensorflow.keras.layers import Dense, Dropout, LSTM
from tensorflow.keras.layers import RepeatVector, Reshape, TimeDistributed from tensorflow.keras.layers import RepeatVector, Reshape, TimeDistributed
from tensorflow.keras.losses import Huber from tensorflow.keras.losses import Huber
from tensorflow.keras.optimizers import Adam from tensorflow.keras.optimizers import Adam
from source.model_utils import * from deepof.model_utils import *
import tensorflow as tf import tensorflow as tf
import tensorflow_probability as tfp import tensorflow_probability as tfp
......
...@@ -11,7 +11,7 @@ from tensorflow.keras.layers import Dense, Dropout, LSTM ...@@ -11,7 +11,7 @@ from tensorflow.keras.layers import Dense, Dropout, LSTM
from tensorflow.keras.layers import RepeatVector, Reshape, TimeDistributed from tensorflow.keras.layers import RepeatVector, Reshape, TimeDistributed
from tensorflow.keras.losses import Huber from tensorflow.keras.losses import Huber
from tensorflow.keras.optimizers import Nadam from tensorflow.keras.optimizers import Nadam
from source.model_utils import * from deepof.model_utils import *
import tensorflow as tf import tensorflow as tf
import tensorflow_probability as tfp import tensorflow_probability as tfp
......
...@@ -11,7 +11,7 @@ import os ...@@ -11,7 +11,7 @@ import os
import warnings import warnings
import networkx as nx import networkx as nx
from source.utils import * from deepof.utils import *
class project: class project:
......
# @author lucasmiranda42 # @author lucasmiranda42
from datetime import datetime from datetime import datetime
from source.preprocess import * from deepof.preprocess import *
from source.hypermodels import * from deepof.hypermodels import *
from kerastuner import BayesianOptimization from kerastuner import BayesianOptimization
from tensorflow import keras from tensorflow import keras
import argparse import argparse
......
# @author lucasmiranda42 # @author lucasmiranda42
from datetime import datetime from datetime import datetime
from source.preprocess import * from deepof.preprocess import *
from source.models import * from deepof.models import *
from tensorflow import keras from tensorflow import keras
import argparse import argparse
import os, pickle import os, pickle
......
...@@ -5,8 +5,8 @@ import sys ...@@ -5,8 +5,8 @@ import sys
sys.path.insert(1, "../") sys.path.insert(1, "../")
from source.preprocess import * from deepof.preprocess import *
from source.models import * from deepof.models import *
import argparse import argparse
import cv2 import cv2
import os, pickle import os, pickle
......
...@@ -10,8 +10,8 @@ from datetime import datetime ...@@ -10,8 +10,8 @@ from datetime import datetime
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.manifold import TSNE from sklearn.manifold import TSNE
from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_absolute_error
from source.preprocess import * from deepof.preprocess import *
from source.models import * from deepof.models import *
from tqdm import tqdm from tqdm import tqdm
import argparse import argparse
import numpy as np import numpy as np
......
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment