Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Lucas Miranda
deepOF
Commits
1a4e8cdc
Commit
1a4e8cdc
authored
Apr 22, 2021
by
lucas_miranda
Browse files
Added a Conv1D layer at the end of both decoder and next_sequence_predictor
parent
c25f8d92
Changes
1
Show whitespace changes
Inline
Side-by-side
deepof/models.py
View file @
1a4e8cdc
...
...
@@ -341,7 +341,7 @@ class SEQ_2_SEQ_GMVAE:
"bidirectional_merge"
:
"concat"
,
"clipvalue"
:
1.0
,
"dense_activation"
:
"relu"
,
"dense_layers_per_branch"
:
1
,
"dense_layers_per_branch"
:
3
,
"dropout_rate"
:
0.05
,
"learning_rate"
:
1e-3
,
"units_conv"
:
64
,
...
...
@@ -362,7 +362,7 @@ class SEQ_2_SEQ_GMVAE:
filters
=
self
.
CONV_filters
,
kernel_size
=
5
,
strides
=
1
,
padding
=
"
causal
"
,
padding
=
"
same
"
,
activation
=
self
.
dense_activation
,
kernel_initializer
=
he_uniform
(),
use_bias
=
True
,
...
...
@@ -418,6 +418,8 @@ class SEQ_2_SEQ_GMVAE:
Model_B1
=
BatchNormalization
()
Model_B2
=
BatchNormalization
()
Model_B3
=
BatchNormalization
()
Model_B4
=
BatchNormalization
()
seq_D
=
[
Dense
(
self
.
DENSE_2
,
...
...
@@ -463,6 +465,15 @@ class SEQ_2_SEQ_GMVAE:
),
merge_mode
=
self
.
bidirectional_merge
,
)
Model_D6
=
tf
.
keras
.
layers
.
Conv1D
(
filters
=
self
.
CONV_filters
,
kernel_size
=
5
,
strides
=
1
,
padding
=
"same"
,
activation
=
self
.
dense_activation
,
kernel_initializer
=
he_uniform
(),
use_bias
=
True
,
)
# Predictor layers
Model_P1
=
Dense
(
...
...
@@ -519,11 +530,13 @@ class SEQ_2_SEQ_GMVAE:
Model_B1
,
Model_B2
,
Model_B3
,
Model_B4
,
Model_D1
,
Model_D2
,
Model_D3
,
Model_D4
,
Model_D5
,
Model_D6
,
Model_P1
,
Model_P2
,
Model_P3
,
...
...
@@ -547,11 +560,13 @@ class SEQ_2_SEQ_GMVAE:
Model_B1
,
Model_B2
,
Model_B3
,
Model_B4
,
Model_D1
,
Model_D2
,
Model_D3
,
Model_D4
,
Model_D5
,
Model_D6
,
Model_P1
,
Model_P2
,
Model_P3
,
...
...
@@ -577,7 +592,7 @@ class SEQ_2_SEQ_GMVAE:
self
.
number_of_components
,
name
=
"cluster_assignment"
,
activation
=
"softmax"
,
kernel
_regularizer
=
(
activity
_regularizer
=
(
tf
.
keras
.
regularizers
.
l1_l2
(
l1
=
0.01
,
l2
=
0.01
)
if
self
.
reg_cat_clusters
else
None
...
...
@@ -688,6 +703,8 @@ class SEQ_2_SEQ_GMVAE:
generator
=
Model_B2
(
generator
)
generator
=
Model_D5
(
generator
)
generator
=
Model_B3
(
generator
)
generator
=
Model_D6
(
generator
)
generator
=
Model_B4
(
generator
)
x_decoded_mean
=
Dense
(
tfpl
.
IndependentNormal
.
params_size
(
input_shape
[
2
:])
//
2
)(
generator
)
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment