Skip to content
Snippets Groups Projects
Commit a3e05700 authored by Philipp Frank's avatar Philipp Frank
Browse files

vi update params

parent 46d81f29
Branches
No related tags found
No related merge requests found
Pipeline #147566 passed
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2021 Max-Planck-Society
# Authors: Reimar Leike, Philipp Arras, Philipp Frank
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
###############################################################################
# Variational Inference (VI)
#
# This script demonstrates how MGVI, GeoVI, MeanfieldVI and FullCovarianceVI
# work for an inference problem with only two real quantities of interest. This
# enables us to plot the posterior probability density as two-dimensional plot.
###############################################################################
import numpy as np
import matplotlib.pyplot as plt
from functools import partial
from matplotlib.colors import LogNorm
import nifty8 as ift
def main():
dom = ift.UnstructuredDomain(1)
scale = 10.
def transformation(x,y):
e = x.exp() if isinstance(x, ift.Operator) else np.exp(x)
return scale * e * y
def jac_transformation(x,y):
d = scale * np.exp(x)
return np.stack((d*y, d), axis = -1)
def metric(x,y):
jac = jac_transformation(x,y)
met = np.einsum('ij,ik -> ijk', jac, jac)
met += np.multiply.outer(np.ones(x.shape), np.eye(2))
return met
def metric_function(met, fun):
v, U = np.linalg.eigh(met)
fv = fun(v)
return np.einsum('ijk, ik, ilk -> ijl', U, fv, U)
def geo_transformation(x,y, x0, y0):
t = transformation(x, y)
t0 = transformation(x0, y0)
j0 = jac_transformation(x0, y0)
m0 = metric(x0, y0)
s = np.stack((x, y), axis = -1)
s0 = np.stack((x0, y0), axis = -1)
g = s - s0 + (j0.T * (t - t0)).T
inv_sq = metric_function(m0, lambda k: 1./np.sqrt(k))
return np.einsum('ijk, ik -> ij', inv_sq, g)
def jac_geo_trafo(x,y,x0,y0):
j = jac_transformation(x,y)
j0 = jac_transformation(x0,y0)
m0 = metric(x0,y0)
inv_sq = metric_function(m0, lambda k: 1./np.sqrt(k))
jg = np.multiply.outer(np.ones_like(x), np.eye(2))
jg += np.einsum('ij, ik -> ijk', j0, j)
return np.einsum('ijk, ikl -> ijl', inv_sq, jg)
def mg_prob(x,y, x0,y0, a0,b0):
shp = x.shape
x = x.flatten()
y = y.flatten()
x0 = np.ones_like(x) * x0
y0 = np.ones_like(y) * y0
a0 = np.ones_like(x) * a0
b0 = np.ones_like(y) * b0
metric0 = metric(x0, y0)
s = np.stack((x, y), axis = -1)
s = s - np.stack((a0, b0), axis = -1)
res = np.einsum('ij, ijk, ik -> i', s, metric0, s)
return np.exp(-0.5*res).reshape(shp)
def geo_prob(x,y,x0,y0,a0,b0):
shp = x.shape
x = x.flatten()
y = y.flatten()
x0 = np.ones_like(x) * x0
y0 = np.ones_like(y) * y0
a0 = np.ones_like(x) * a0
b0 = np.ones_like(y) * b0
x = x - a0 + x0
y = y - b0 + y0
g = geo_transformation(x,y,x0,y0)
jg = jac_geo_trafo(x,y,x0,y0)
res = np.einsum('ij,ij -> i', g, g)
mymet = np.einsum('ikj, ikl -> ijl', jg, jg)
det = np.linalg.det(mymet)
res -= np.log(det)
return np.exp(-0.5*res).reshape(shp)
a = ift.FieldAdapter(dom, 'a')
b = ift.FieldAdapter(dom, 'b')
model = transformation(a, b)
data = ift.full(dom, 2.)
lh = ift.GaussianEnergy(data=data) @ model
icsamp = ift.AbsDeltaEnergyController(deltaE=0.1, iteration_limit=2)
ham = ift.StandardHamiltonian(lh, icsamp)
x_limits = [-6, 6]
y_limits = [-6, 6]
x = np.linspace(*x_limits, num=401)
y = np.linspace(*y_limits, num=401)
xx, yy = np.meshgrid(x, y, indexing='ij')
pdfs = [mg_prob, geo_prob]
pdfs = [partial(p, xx, yy) for p in pdfs]
def np_ham(x, y):
prior = x**2 + y**2
mean = transformation(x, y)
d = data.val[0]
lh = .5*(d - mean)**2
return lh + prior
z = np.exp(-1.*np_ham(xx, yy))
z /= np.max(z)
mapx = xx[z == np.max(z)]
mapy = yy[z == np.max(z)]
meanx = (xx*z).sum()/z.sum()
meany = (yy*z).sum()/z.sum()
fig, axs = plt.subplots(1, 2, figsize=[12, 8])
axs = axs.flatten()
def update_plot(runs):
for axx, (nn, kl, m), prob in zip(axs, runs, pdfs):
axx.clear()
axx.imshow(z.T, origin='lower', cmap='gist_earth_r',
norm=LogNorm(vmin=1e-4, vmax=np.max(z)),
extent=x_limits + y_limits)
mx, my = m['a'].val[0], m['b'].val[0]
mm = kl.position
ax, ay = mm['a'].val[0], mm['b'].val[0]
p = prob(mx, my, ax, ay)
p[p == np.nan] = 0.
axx.contour(xx, yy, p, levels=np.linspace(0,np.max(p),11))
samples = kl.samples.iterator()
samples = [[s.val['a'][0], s.val['b'][0]] for s in samples]
samples = np.array(samples)
mmx = np.sum(xx*p)/np.sum(p)
mmy = np.sum(yy*p)/np.sum(p)
axx.scatter(samples[:,0], samples[:,1],
label=f'{nn} samples')
axx.scatter(mmx, mmy, label=f'{nn} mean')
axx.scatter(mapx, mapy, label='MAP')
axx.scatter(meanx, meany, label='Posterior mean')
axx.set_title(nn)
axx.set_xlim(x_limits)
axx.set_ylim(y_limits)
axx.legend(loc='lower right')
axs[1].yaxis.set_visible(False)
axs[0].set_xlabel('x')
axs[0].set_ylabel('y')
axs[1].set_xlabel('x')
fig.tight_layout()
plt.draw()
plt.pause(2.)
n_samples = 20
minimizer = ift.NewtonCG(
ift.GradientNormController(iteration_limit=1, name='Mini'))
posmg = ift.full(ham.domain, -5.)
posgeo = ift.full(ham.domain, -5.)
for ii in range(30):
if ii % 3 == 0:
# Resample GeoVI and MGVI
mgkl = ift.SampledKLEnergy(posmg, ham, n_samples, None, True)
mini_samp = ift.NewtonCG(
ift.AbsDeltaEnergyController(1E-8, iteration_limit=5))
geokl = ift.SampledKLEnergy(posgeo, ham, n_samples, mini_samp,
True)
mg_m = mgkl.position
geo_m = geokl.position
runs = (("MGVI", mgkl, mg_m), ("GeoVI", geokl, geo_m))
update_plot(runs)
mgkl, _ = minimizer(mgkl)
geokl, _ = minimizer(geokl)
posmg = mgkl.position
posgeo = geokl.position
runs = (("MGVI", mgkl, mg_m), ("GeoVI", geokl, geo_m))
update_plot(runs)
ift.logger.info('Finished')
# Uncomment the following line in order to leave the plots open
plt.show()
if __name__ == '__main__':
main()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment