Skip to content
Snippets Groups Projects
Commit ee9facdf authored by Philipp Arras's avatar Philipp Arras
Browse files

Cosmetics

parent a8eea18a
Branches
Tags
No related merge requests found
...@@ -23,13 +23,14 @@ from helpers import (checkerboard_response, generate_gaussian_data, ...@@ -23,13 +23,14 @@ from helpers import (checkerboard_response, generate_gaussian_data,
np.random.seed(42) np.random.seed(42)
position_space = ift.RGSpace([256, 256]) position_space = ift.RGSpace(2*(256,))
harmonic_space = position_space.get_default_codomain() harmonic_space = position_space.get_default_codomain()
HT = ift.HarmonicTransformOperator(harmonic_space, target=position_space) HT = ift.HarmonicTransformOperator(harmonic_space, target=position_space)
power_space = ift.PowerSpace(harmonic_space) power_space = ift.PowerSpace(harmonic_space)
# Set up an amplitude operator for the field # Set up generative model
dct = { A = ift.SLAmplitude(
**{
'target': power_space, 'target': power_space,
'n_pix': 64, # 64 spectral bins 'n_pix': 64, # 64 spectral bins
# Smoothness of spectrum # Smoothness of spectrum
...@@ -40,8 +41,7 @@ dct = { ...@@ -40,8 +41,7 @@ dct = {
'sv': .6, # low variance of power-law slope 'sv': .6, # low variance of power-law slope
'im': -2, # y-intercept mean, in-/decrease for more/less contrast 'im': -2, # y-intercept mean, in-/decrease for more/less contrast
'iv': 2. # y-intercept variance 'iv': 2. # y-intercept variance
} })
A = ift.SLAmplitude(**dct)
signal = ift.CorrelatedField(position_space, A) signal = ift.CorrelatedField(position_space, A)
R = checkerboard_response(position_space) R = checkerboard_response(position_space)
...@@ -57,12 +57,11 @@ plot_prior_samples_2d(5, signal, R, signal, A, 'gauss', N=N) ...@@ -57,12 +57,11 @@ plot_prior_samples_2d(5, signal, R, signal, A, 'gauss', N=N)
likelihood = ift.GaussianEnergy( likelihood = ift.GaussianEnergy(
mean=data, inverse_covariance=N.inverse)(signal_response) mean=data, inverse_covariance=N.inverse)(signal_response)
# SOLVE INFERENCE PROBLEM # Solve inference problem
ic_sampling = ift.GradientNormController(iteration_limit=100) ic_sampling = ift.GradientNormController(iteration_limit=100)
ic_newton = ift.GradInfNormController( ic_newton = ift.GradInfNormController(
name='Newton', tol=1e-6, iteration_limit=30) name='Newton', tol=1e-6, iteration_limit=30)
minimizer = ift.NewtonCG(ic_newton) minimizer = ift.NewtonCG(ic_newton)
H = ift.StandardHamiltonian(likelihood, ic_sampling) H = ift.StandardHamiltonian(likelihood, ic_sampling)
initial_mean = ift.MultiField.full(H.domain, 0.) initial_mean = ift.MultiField.full(H.domain, 0.)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment