Commit ff8ae4c1 authored by Philipp Arras's avatar Philipp Arras
Browse files

Remove usage of `NIFTy` in docs

parent 7bc7f7ba
......@@ -15,7 +15,7 @@
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
# Data object module for NIFTy that uses simple numpy ndarrays.
# Data object module that uses simple numpy ndarrays.
import numpy as np
from numpy import absolute, clip, cos, cosh, empty, empty_like, exp, full, log
......
......@@ -21,7 +21,7 @@ from .structured_domain import StructuredDomain
class GLSpace(StructuredDomain):
"""NIFTy subclass for Gauss-Legendre pixelizations of the two-sphere.
"""Represents a 2-sphere with Gauss-Legendre pixelizations.
Its harmonic partner domain is the
:class:`~nifty5.domains.lm_space.LMSpace`.
......
......@@ -21,7 +21,7 @@ from .structured_domain import StructuredDomain
class HPSpace(StructuredDomain):
"""NIFTy subclass for HEALPix discretizations of the two-sphere.
"""Represents 2-sphere with HEALPix discretization.
Its harmonic partner domain is the
:class:`~nifty5.domains.lm_space.LMSpace`.
......
......@@ -22,7 +22,7 @@ from .structured_domain import StructuredDomain
class LMSpace(StructuredDomain):
"""NIFTy subclass for sets of spherical harmonic coefficients.
"""Represents sets of spherical harmonic coefficients.
Its harmonic partner spaces are :class:`~nifty5.domains.hp_space.HPSpace`
and :class:`~nifty5.domains.gl_space.GLSpace`.
......
......@@ -24,7 +24,7 @@ from .structured_domain import StructuredDomain
class LogRGSpace(StructuredDomain):
"""NIFTy subclass for logarithmic Cartesian grids.
"""Represents a logarithmic Cartesian grid.
Parameters
----------
......
......@@ -22,7 +22,7 @@ from .structured_domain import StructuredDomain
class PowerSpace(StructuredDomain):
"""NIFTy class for spaces of power spectra.
"""Represents non-equidistantly binned spaces for power spectra.
A power space is the result of a projection of a harmonic domain where
k-modes of equal length get mapped to one power index.
......
......@@ -24,7 +24,7 @@ from .structured_domain import StructuredDomain
class RGSpace(StructuredDomain):
"""NIFTy subclass for regular Cartesian grids.
"""Represents a regular Cartesian grid.
Parameters
----------
......
......@@ -21,7 +21,7 @@ from .domain import Domain
class StructuredDomain(Domain):
"""The abstract base class for all structured NIFTy domains.
"""The abstract base class for all structured domains.
An instance of a space contains information about the manifold's
geometry and enhances the functionality of Domain by methods that
......
......@@ -23,18 +23,15 @@ from .domain_tuple import DomainTuple
class Field(object):
_scalar_dom = DomainTuple.scalar_domain()
"""The discrete representation of a continuous field over multiple spaces.
In NIFTy, Fields are used to store data arrays and carry all the needed
metainformation (i.e. the domain) for operators to be able to work on them.
Stores data arrays and carry all the needed metainformation (i.e. the
domain) for operators to be able to operate on them.
Parameters
----------
domain : DomainTuple
the domain of the new Field
val : data_object
This object's global shape must match the domain shape
After construction, the object will no longer be writeable!
......@@ -42,9 +39,11 @@ class Field(object):
Notes
-----
If possible, do not invoke the constructor directly, but use one of the
many convenience functions for Field construction!
many convenience functions for instantiation!
"""
_scalar_dom = DomainTuple.scalar_domain()
def __init__(self, domain, val):
if not isinstance(domain, DomainTuple):
raise TypeError("domain must be of type DomainTuple")
......@@ -337,7 +336,7 @@ class Field(object):
"""
if not isinstance(x, Field):
raise TypeError("The multiplier must be an instance of " +
"the NIFTy field class")
"the Field class")
from .operators.outer_product_operator import OuterProduct
return OuterProduct(self, x.domain)(x)
......@@ -360,7 +359,7 @@ class Field(object):
"""
if not isinstance(x, Field):
raise TypeError("The dot-partner must be an instance of " +
"the NIFTy field class")
"the Field class")
if x._domain != self._domain:
raise ValueError("Domain mismatch")
......
......@@ -69,7 +69,6 @@ def SlopeOperator(domain, sm, sv, im, iv):
'''
Parameters
----------
sm, sv : slope_mean = expected exponent of power law (e.g. -4),
slope_variance (default=1)
......
......@@ -24,7 +24,7 @@ from .endomorphic_operator import EndomorphicOperator
class DiagonalOperator(EndomorphicOperator):
"""NIFTy class for diagonal operators.
"""Represents a linear operator which is diagonal.
The NIFTy DiagonalOperator class is a subclass derived from the
EndomorphicOperator. It multiplies an input field pixel-wise with its
......
......@@ -21,12 +21,9 @@ from .linear_operator import LinearOperator
class EndomorphicOperator(LinearOperator):
"""NIFTy class for endomorphic operators.
The NIFTy EndomorphicOperator describes linear operators with identical
domain and target.
"""Represents a linear operator which is endomorphic, i.e. operators which
have identical domain and target.
"""
@property
def target(self):
"""DomainTuple : returns :attr:`domain`
......
......@@ -24,9 +24,6 @@ from .endomorphic_operator import EndomorphicOperator
class ScalingOperator(EndomorphicOperator):
"""Operator which multiplies a Field with a scalar.
The NIFTy ScalingOperator class is a subclass derived from the
EndomorphicOperator. It multiplies an input field with a given factor.
Parameters
----------
factor : scalar
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment