Commit fc0ca7ea authored by Marco Selig's avatar Marco Selig

minor changes; documentation updated.

parent 48f85f76
This diff is collapsed.
......@@ -1150,7 +1150,6 @@ class explicit_operator(operator):
X = X.astype(max(min(X.dtype,self.domain.datatype),min(X.dtype,self.target.datatype)))
else:
raise ValueError(about._errors.cstring("ERROR: dimension mismatch ( "+str(np.size(X))+" <> "+str(self.ncol())+" x "+str(self.ncol())+" )."))
return explicit_operator(self.domain,self._calc_mul(X,1),bare=True,sym=sym,uni=uni,target=newtarget)
def __imul__(self,X): ## __imul__ : self *= X
......@@ -1386,7 +1385,7 @@ class explicit_operator(operator):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.explicit_operator>"
return "<nifty_explicit.explicit_operator>"
##-----------------------------------------------------------------------------
......@@ -1846,7 +1845,7 @@ class explicit_probing(probing):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.explicit_probing>"
return "<nifty_explicit.explicit_probing>"
##-----------------------------------------------------------------------------
......
......@@ -339,7 +339,7 @@ def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None
var : {scalar, list, array}, *optional*
Variance of the assumed spectral smoothness prior (default: 10).
force : bool, *optional*, *experimental*
Indicates whether smoothness is to be enforces or not
Indicates whether smoothness is to be enforced or not
(default: False).
bare : bool, *optional*
Indicates whether the power spectrum entries returned are "bare"
......
......@@ -260,7 +260,7 @@ class invertible_operator(operator):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.invertible_operator>"
return "<nifty_tools.invertible_operator>"
##-----------------------------------------------------------------------------
......@@ -417,10 +417,10 @@ class propagator_operator(operator):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def _standard_M_times_1(self,x): ## applies > R_adjoint N_inverse R assuming N is diagonal
def _standard_M_times_1(self,x,**kwargs): ## applies > R_adjoint N_inverse R assuming N is diagonal
return self.RN[0].adjoint_times(self.RN[1]._inverse_multiply(self.RN[0].times(x))) ## N.imp = True
def _standard_M_times_2(self,x): ## applies > R_adjoint N_inverse R
def _standard_M_times_2(self,x,**kwargs): ## applies > R_adjoint N_inverse R
return self.RN[0].adjoint_times(self.RN[1].inverse_times(self.RN[0].times(x)))
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
......@@ -552,7 +552,7 @@ class propagator_operator(operator):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.propagator_operator>"
return "<nifty_tools.propagator_operator>"
##-----------------------------------------------------------------------------
......@@ -866,7 +866,7 @@ class conjugate_gradient(object):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.conjugate_gradient>"
return "<nifty_tools.conjugate_gradient>"
##=============================================================================
......@@ -1130,7 +1130,7 @@ class steepest_descent(object):
##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
def __repr__(self):
return "<nifty.steepest_descent>"
return "<nifty_tools.steepest_descent>"
##=============================================================================
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment