Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
On Thursday, 7th July from 1 to 3 pm there will be a maintenance with a short downtime of GitLab.
Open sidebar
ift
NIFTy
Commits
f44d8758
Commit
f44d8758
authored
Dec 05, 2019
by
Martin Reinecke
Browse files
start adjusting demos
parent
d166c586
Pipeline
#64980
failed with stages
in 8 minutes and 36 seconds
Changes
7
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
demos/bench_gridder.py
View file @
f44d8758
...
...
@@ -31,9 +31,9 @@ for ii in range(10, 26):
vis
=
ift
.
from_global_data
(
visspace
,
vis
)
op
=
GM
.
getFull
().
adjoint
t1
=
time
()
op
(
img
).
to_global_data
()
op
(
img
).
val
t2
=
time
()
op
.
adjoint
(
vis
).
to_global_data
()
op
.
adjoint
(
vis
).
val
t3
=
time
()
print
(
t2
-
t1
,
t3
-
t2
)
N0s
.
append
(
N
)
...
...
demos/getting_started_1.py
View file @
f44d8758
...
...
@@ -42,7 +42,7 @@ def make_random_mask():
# Random mask for spherical mode
mask
=
ift
.
from_random
(
'pm1'
,
position_space
)
mask
=
(
mask
+
1
)
/
2
return
mask
.
to_global_data
()
return
mask
.
val
if
__name__
==
'__main__'
:
...
...
@@ -95,7 +95,7 @@ if __name__ == '__main__':
# and harmonic transformaion
# Masking operator to model that parts of the field have not been observed
mask
=
ift
.
Field
.
from_
global_data
(
position_space
,
mask
)
mask
=
ift
.
Field
.
from_
arr
(
position_space
,
mask
)
Mask
=
ift
.
MaskOperator
(
mask
)
# The response operator consists of
...
...
demos/getting_started_2.py
View file @
f44d8758
...
...
@@ -40,7 +40,7 @@ def exposure_2d():
exposure
[:,
x_shape
*
4
//
5
:
x_shape
]
*=
.
1
exposure
[:,
x_shape
//
2
:
x_shape
*
3
//
2
]
*=
3.
return
ift
.
Field
.
from_
global_data
(
position_space
,
exposure
)
return
ift
.
Field
.
from_
arr
(
position_space
,
exposure
)
if
__name__
==
'__main__'
:
...
...
@@ -94,8 +94,8 @@ if __name__ == '__main__':
lamb
=
R
(
sky
)
mock_position
=
ift
.
from_random
(
'normal'
,
domain
)
data
=
lamb
(
mock_position
)
data
=
np
.
random
.
poisson
(
data
.
to_global_data
()
.
astype
(
np
.
float64
))
data
=
ift
.
Field
.
from_
global_data
(
d_space
,
data
)
data
=
np
.
random
.
poisson
(
data
.
val
.
astype
(
np
.
float64
))
data
=
ift
.
Field
.
from_
arr
(
d_space
,
data
)
likelihood
=
ift
.
PoissonianEnergy
(
data
)(
lamb
)
# Settings for minimization
...
...
demos/getting_started_mf.py
View file @
f44d8758
...
...
@@ -40,7 +40,7 @@ class SingleDomain(ift.LinearOperator):
def
apply
(
self
,
x
,
mode
):
self
.
_check_input
(
x
,
mode
)
return
ift
.
from_global_data
(
self
.
_tgt
(
mode
),
x
.
to_global_data
()
)
return
ift
.
from_global_data
(
self
.
_tgt
(
mode
),
x
.
val
)
def
random_los
(
n_los
):
...
...
demos/multi_amplitudes_consistency.py
View file @
f44d8758
...
...
@@ -9,12 +9,12 @@ def testAmplitudesConsistency(seed, sspace):
sc
=
ift
.
StatCalculator
()
for
s
in
samples
:
sc
.
add
(
op
(
s
.
extract
(
op
.
domain
)))
return
sc
.
mean
.
to_global_data
(),
sc
.
var
.
sqrt
().
to_global_data
()
return
sc
.
mean
.
val
,
sc
.
var
.
sqrt
().
val
np
.
random
.
seed
(
seed
)
offset_std
=
.
1
intergated_fluct_std0
=
.
003
intergated_fluct_std1
=
0.1
nsam
=
1000
...
...
@@ -32,7 +32,7 @@ def testAmplitudesConsistency(seed, sspace):
offset_std
,
_
=
stats
(
fa
.
amplitude_total_offset
,
samples
)
intergated_fluct_std0
,
_
=
stats
(
fa
.
average_fluctuation
(
0
),
samples
)
intergated_fluct_std1
,
_
=
stats
(
fa
.
average_fluctuation
(
1
),
samples
)
slice_fluct_std0
,
_
=
stats
(
fa
.
slice_fluctuation
(
0
),
samples
)
slice_fluct_std1
,
_
=
stats
(
fa
.
slice_fluctuation
(
1
),
samples
)
...
...
@@ -54,7 +54,7 @@ def testAmplitudesConsistency(seed, sspace):
print
(
"Expected integrated fluct. frequency Std: "
+
str
(
intergated_fluct_std1
))
print
(
"Estimated integrated fluct. frequency Std: "
+
str
(
fluct_freq
))
print
(
"Expected slice fluct. space Std: "
+
str
(
slice_fluct_std0
))
print
(
"Estimated slice fluct. space Std: "
+
str
(
sl_fluct_space
))
...
...
@@ -65,8 +65,8 @@ def testAmplitudesConsistency(seed, sspace):
print
(
"Expected total fluct. Std: "
+
str
(
tot_flm
))
print
(
"Estimated total fluct. Std: "
+
str
(
fluct_total
))
np
.
testing
.
assert_allclose
(
offset_std
,
zm_std_mean
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std0
,
fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
intergated_fluct_std1
,
fluct_freq
,
rtol
=
0.5
)
...
...
@@ -74,7 +74,7 @@ def testAmplitudesConsistency(seed, sspace):
np
.
testing
.
assert_allclose
(
slice_fluct_std0
,
sl_fluct_space
,
rtol
=
0.5
)
np
.
testing
.
assert_allclose
(
slice_fluct_std1
,
sl_fluct_freq
,
rtol
=
0.5
)
fa
=
ift
.
CorrelatedFieldMaker
.
make
(
offset_std
,
.
1
,
''
)
fa
.
add_fluctuations
(
fsspace
,
intergated_fluct_std1
,
1.
,
3.1
,
1.
,
.
5
,
.
1
,
-
4
,
1.
,
'freq'
)
...
...
@@ -87,7 +87,7 @@ def testAmplitudesConsistency(seed, sspace):
print
(
"Forced slice fluct. space Std: "
+
str
(
m
))
print
(
"Expected slice fluct. Std: "
+
str
(
em
))
np
.
testing
.
assert_allclose
(
m
,
em
,
rtol
=
0.5
)
assert
op
.
target
[
0
]
==
sspace
assert
op
.
target
[
1
]
==
fsspace
...
...
demos/polynomial_fit.py
View file @
f44d8758
...
...
@@ -36,7 +36,7 @@ def polynomial(coefficients, sampling_points):
if
not
(
isinstance
(
coefficients
,
ift
.
Field
)
and
isinstance
(
sampling_points
,
np
.
ndarray
)):
raise
TypeError
params
=
coefficients
.
to_global_data
()
params
=
coefficients
.
val
out
=
np
.
zeros_like
(
sampling_points
)
for
ii
in
range
(
len
(
params
)):
out
+=
params
[
ii
]
*
sampling_points
**
ii
...
...
@@ -71,7 +71,7 @@ class PolynomialResponse(ift.LinearOperator):
def
apply
(
self
,
x
,
mode
):
self
.
_check_input
(
x
,
mode
)
val
=
x
.
to_global_data_rw
()
val
=
x
.
val
.
copy
()
if
mode
==
self
.
TIMES
:
# FIXME Use polynomial() here
out
=
self
.
_mat
.
dot
(
val
)
...
...
@@ -136,9 +136,8 @@ plt.savefig('fit.png')
plt
.
close
()
# Print parameters
mean
=
sc
.
mean
.
to_global_data
()
sigma
=
np
.
sqrt
(
sc
.
var
.
to_global_data
())
if
ift
.
dobj
.
master
:
for
ii
in
range
(
len
(
mean
)):
print
(
'Coefficient x**{}: {:.2E} +/- {:.2E}'
.
format
(
ii
,
mean
[
ii
],
mean
=
sc
.
mean
.
val
sigma
=
np
.
sqrt
(
sc
.
var
.
val
)
for
ii
in
range
(
len
(
mean
)):
print
(
'Coefficient x**{}: {:.2E} +/- {:.2E}'
.
format
(
ii
,
mean
[
ii
],
sigma
[
ii
]))
nifty6/version.py
View file @
f44d8758
...
...
@@ -3,7 +3,7 @@
# 2) we can import it in setup.py for the same reason
# 3) we can import it into your module module
__version__
=
'
5
.0.0'
__version__
=
'
6
.0.0'
def
gitversion
():
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment