Skip to content
Snippets Groups Projects
Commit e1b86d2b authored by Philipp Arras's avatar Philipp Arras
Browse files

Add basic mpi kl tests

parent f9d8ed85
No related branches found
No related tags found
1 merge request!452Add basic mpi kl tests
Pipeline #73141 passed
...@@ -43,6 +43,13 @@ test_serial: ...@@ -43,6 +43,13 @@ test_serial:
- > - >
grep TOTAL coverage.txt | awk '{ print "TOTAL: "$4; }' grep TOTAL coverage.txt | awk '{ print "TOTAL: "$4; }'
test_mpi:
stage: test
variables:
OMPI_MCA_btl_vader_single_copy_mechanism: none
script:
- mpiexec -n 2 --bind-to none pytest-3 -q test/test_mpi
pages: pages:
stage: release stage: release
script: script:
......
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
import pytest
from mpi4py import MPI
from numpy.testing import assert_, assert_allclose
import nifty6 as ift
from ..common import setup_function, teardown_function
comm = MPI.COMM_WORLD
ntask = comm.Get_size()
rank = comm.Get_rank()
master = (rank == 0)
mpi = ntask > 1
pmp = pytest.mark.parametrize
pms = pytest.mark.skipif
@pms(ntask != 2, reason="requires exactly two mpi tasks")
@pmp('constants', ([], ['a'], ['b'], ['a', 'b']))
@pmp('point_estimates', ([], ['a'], ['b'], ['a', 'b']))
@pmp('mirror_samples', (False, True))
@pmp('mode', (0, 1))
def test_kl(constants, point_estimates, mirror_samples, mode):
dom = ift.RGSpace((12,), (2.12))
op0 = ift.HarmonicSmoothingOperator(dom, 3)
op = ift.ducktape(dom, None, 'a')*(op0.ducktape('b'))
lh = ift.GaussianEnergy(domain=op.target) @ op
ic = ift.GradientNormController(iteration_limit=5)
h = ift.StandardHamiltonian(lh, ic_samp=ic)
mean0 = ift.from_random('normal', h.domain)
nsamps = 2
args = {'constants': constants,
'point_estimates': point_estimates,
'mirror_samples': mirror_samples,
'n_samples': 2,
'mean': mean0,
'hamiltonian': h}
if mode == 0:
kl0 = ift.MetricGaussianKL(**args, comm=comm)
locsamp = kl0._local_samples
kl1 = ift.MetricGaussianKL(**args, comm=comm, _local_samples=locsamp)
elif mode == 1:
kl0 = ift.MetricGaussianKL(**args)
samples = kl0._local_samples
ii = len(samples)//2
slc = slice(None, ii) if rank == 0 else slice(ii, None)
locsamp = samples[slc]
kl1 = ift.MetricGaussianKL(**args, comm=comm, _local_samples=locsamp)
# Test value
assert_allclose(kl0.value, kl1.value)
# Test gradient
for kk in h.domain.keys():
res0 = kl0.gradient[kk].val
if kk in constants:
res0 = 0*res0
res1 = kl1.gradient[kk].val
assert_allclose(res0, res1)
# Test number of samples
expected_nsamps = 2*nsamps if mirror_samples else nsamps
assert_(len(tuple(kl0.samples)) == expected_nsamps)
assert_(len(tuple(kl1.samples)) == expected_nsamps)
# Test point_estimates (after drawing samples)
for kk in point_estimates:
for ss in kl0.samples:
ss = ss[kk].val
assert_allclose(ss, 0*ss)
for ss in kl1.samples:
ss = ss[kk].val
assert_allclose(ss, 0*ss)
# Test constants (after some minimization)
cg = ift.GradientNormController(iteration_limit=5)
minimizer = ift.NewtonCG(cg)
for e in [kl0, kl1]:
e, _ = minimizer(e)
diff = (mean0 - e.position).to_dict()
for kk in constants:
assert_allclose(diff[kk].val, 0*diff[kk].val)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment