Skip to content
Snippets Groups Projects
Commit d27bca16 authored by Martin Reinecke's avatar Martin Reinecke
Browse files

new stopping criterion

parent 4ee9b94a
Branches
Tags
2 merge requests!174Master,!166Line search
Pipeline #
......@@ -76,8 +76,8 @@ if __name__ == "__main__":
# Choosing the measurement instrument
Instrument = SmoothingOperator(s_space, sigma=0.01)
# Instrument = DiagonalOperator(s_space, diagonal=1.)
# Instrument = SmoothingOperator(s_space, sigma=0.01)
Instrument = DiagonalOperator(s_space, diagonal=1.)
# Instrument._diagonal.val[200:400, 200:400] = 0
#Instrument._diagonal.val[64:512-64, 64:512-64] = 0
......@@ -100,8 +100,8 @@ if __name__ == "__main__":
realized_power = log(sh.power_analyze(binbounds=p_space.binbounds))
data_power = log(fft(d).power_analyze(binbounds=p_space.binbounds))
d_data = d.val.get_full_data().real
#if rank == 0:
# pl.plot([go.Heatmap(z=d_data)], filename='data.html')
if rank == 0:
pl.plot([go.Heatmap(z=d_data)], filename='data.html')
# minimization strategy
......@@ -110,17 +110,18 @@ if __name__ == "__main__":
print (x, iteration)
minimizer1 = RelaxedNewton(convergence_tolerance=1e-2,
convergence_level=2,
minimizer1 = RelaxedNewton(convergence_tolerance=1e-8,
convergence_level=1,
iteration_limit=5,
callback=convergence_measure)
minimizer2 = VL_BFGS(convergence_tolerance=1e-3,
iteration_limit=20,
minimizer2 = VL_BFGS(convergence_tolerance=1e-8,
convergence_level=1,
iteration_limit=1000,
callback=convergence_measure,
max_history_length=10)
minimizer3 = SteepestDescent(convergence_tolerance=1e-3,
iteration_limit=70,
max_history_length=20)
minimizer3 = SteepestDescent(convergence_tolerance=1e-8,
iteration_limit=500,
callback=convergence_measure)
# Setting starting position
......@@ -143,7 +144,7 @@ if __name__ == "__main__":
# Initializing the power energy with updated parameters
power_energy = CriticalPowerEnergy(position=t0, m=m0, D=D0, smoothness_prior=10., samples=3)
(power_energy, convergence) = minimizer3(power_energy)
(power_energy, convergence) = minimizer2(power_energy)
# Setting new power spectrum
......@@ -151,7 +152,7 @@ if __name__ == "__main__":
# Plotting current estimate
print i
#if i%50 == 0:
# plot_parameters(m0,t0,log(sp), data_power)
if i%50 == 0:
plot_parameters(m0,t0,log(sp), data_power)
......@@ -108,6 +108,7 @@ class LineEnergy:
@property
def dd(self):
res = self.energy.gradient.vdot(self.linedir)
assert abs(res-res.real)<1e-12, \
"directional derivative has non-negligible imaginary part"
if abs(res.imag)/max(abs(res.real),1.)>1e-12:
print "directional derivative has non-negligible " \
"imaginary part:", res
return res.real
......@@ -154,6 +154,10 @@ class DescentMinimizer(Loggable, object):
energy=energy,
pk=descent_direction,
f_k_minus_1=f_k_minus_1)
if f_k_minus_1 is None:
delta=1e30
else:
delta = abs(f_k -f_k_minus_1)/max(abs(f_k),abs(f_k_minus_1),1.)
f_k_minus_1 = energy.value
tx1=energy.position-new_energy.position
# check if new energy value is bigger than old energy value
......@@ -165,7 +169,6 @@ class DescentMinimizer(Loggable, object):
energy = new_energy
# check convergence
delta = abs(gradient).max() * step_length / gradient_norm
self.logger.debug("Iteration:%08u step_length=%3.1E "
"delta=%3.1E energy=%3.1E" %
(iteration_number, step_length, delta,
......
......@@ -43,7 +43,8 @@ class Test_DescentMinimizers(unittest.TestCase):
covariance = DiagonalOperator(space, diagonal=covariance_diagonal)
energy = QuadraticPotential(position=starting_point,
eigenvalues=covariance)
minimizer = minimizer_class(iteration_limit=30)
minimizer = minimizer_class(iteration_limit=30,
convergence_tolerance=1e-10)
(energy, convergence) = minimizer(energy)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment