Skip to content
Snippets Groups Projects
Commit c1a84f56 authored by Philipp Frank's avatar Philipp Frank
Browse files

resolution independent amplitude model priors

parent 6ddae70b
No related branches found
No related tags found
No related merge requests found
...@@ -32,7 +32,7 @@ if __name__ == '__main__': ...@@ -32,7 +32,7 @@ if __name__ == '__main__':
position_space = ift.RGSpace([128, 128]) position_space = ift.RGSpace([128, 128])
# Setting up an amplitude model # Setting up an amplitude model
A = ift.AmplitudeModel(position_space, 16, 1, 10, -4., 1, 0., 1.) A = ift.AmplitudeModel(position_space, 64, 3, 0.4, -4., 1, 1., 1.)
dummy = ift.from_random('normal', A.domain) dummy = ift.from_random('normal', A.domain)
# Building the model for a correlated signal # Building the model for a correlated signal
...@@ -46,9 +46,11 @@ if __name__ == '__main__': ...@@ -46,9 +46,11 @@ if __name__ == '__main__':
'xi': harmonic_space 'xi': harmonic_space
}))) })))
correlated_field = ht(power_distributor(A)*ift.FieldAdapter(domain, "xi")) vol = harmonic_space.scalar_dvol
vol = ift.ScalingOperator(vol ** (-0.5),harmonic_space)
correlated_field = ht(vol(power_distributor(A))*ift.FieldAdapter(domain, "xi"))
# alternatively to the block above one can do: # alternatively to the block above one can do:
# correlated_field = ift.CorrelatedField(position_space, A) #correlated_field = ift.CorrelatedField(position_space, A)
# apply some nonlinearity # apply some nonlinearity
signal = ift.positive_tanh(correlated_field) signal = ift.positive_tanh(correlated_field)
......
...@@ -29,7 +29,7 @@ from ..sugar import makeOp, sqrt ...@@ -29,7 +29,7 @@ from ..sugar import makeOp, sqrt
def _ceps_kernel(dof_space, k, a, k0): def _ceps_kernel(dof_space, k, a, k0):
return a**2/(1+(k/(k0*dof_space.bindistances[0]))**2)**2 return a**2/(1+(k/k0)**2)**2
def create_cepstrum_amplitude_field(domain, cepstrum): def create_cepstrum_amplitude_field(domain, cepstrum):
......
...@@ -44,9 +44,8 @@ def CorrelatedField(s_space, amplitude_model): ...@@ -44,9 +44,8 @@ def CorrelatedField(s_space, amplitude_model):
power_distributor = PowerDistributor(h_space, p_space) power_distributor = PowerDistributor(h_space, p_space)
A = power_distributor(amplitude_model) A = power_distributor(amplitude_model)
vol = h_space.scalar_dvol vol = h_space.scalar_dvol
#vol = 1.
vol = ScalingOperator(vol ** (-0.5),h_space) vol = ScalingOperator(vol ** (-0.5),h_space)
return ht(vol(A*FieldAdapter(MultiDomain.make({"xi": h_space}), "xi"))) return ht(vol(A)*FieldAdapter(MultiDomain.make({"xi": h_space}), "xi"))
def MfCorrelatedField(s_space_spatial, s_space_energy, amplitude_model_spatial, def MfCorrelatedField(s_space_spatial, s_space_energy, amplitude_model_spatial,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment