Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
ift
NIFTy
Commits
b87abe36
Commit
b87abe36
authored
Aug 17, 2017
by
Martin Reinecke
Browse files
revise Laplace operator and add some basic testing
parent
186e917e
Pipeline
#16754
failed with stage
in 60 minutes and 4 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
nifty/operators/laplace_operator/laplace_operator.py
View file @
b87abe36
...
...
@@ -20,7 +20,7 @@ import numpy as np
from
nifty.field
import
Field
from
nifty.spaces.power_space
import
PowerSpace
from
nifty.operators.endomorphic_operator
import
EndomorphicOperator
from
nifty
import
sqrt
import
nifty.nifty_utilities
as
utilities
...
...
@@ -55,9 +55,14 @@ class LaplaceOperator(EndomorphicOperator):
pos
[
1
:]
=
np
.
log
(
pos
[
1
:])
pos
[
0
]
=
pos
[
1
]
-
1.
self
.
_dist_l
=
pos
[
1
:
-
1
]
-
pos
[:
-
2
]
self
.
_dist_r
=
pos
[
2
:]
-
pos
[
1
:
-
1
]
self
.
_dist_c
=
0.5
*
(
pos
[
2
:]
-
pos
[:
-
2
])
self
.
_dpos
=
pos
[
1
:]
-
pos
[:
-
1
]
# defined between points
# centered distances (also has entries for the first and last point
# for convenience, but they will never affect the result)
self
.
_dposc
=
np
.
empty_like
(
pos
)
self
.
_dposc
[:
-
1
]
=
self
.
_dpos
self
.
_dposc
[
-
1
]
=
0.
self
.
_dposc
[
1
:]
+=
self
.
_dpos
self
.
_dposc
*=
0.5
@
property
def
target
(
self
):
...
...
@@ -93,20 +98,20 @@ class LaplaceOperator(EndomorphicOperator):
else
:
axes
=
x
.
domain_axes
[
spaces
[
0
]]
axis
=
axes
[
0
]
nval
=
len
(
self
.
_d
ist_l
)
nval
=
len
(
self
.
_d
posc
)
prefix
=
(
slice
(
None
),)
*
axis
sl_c
=
prefix
+
slice
(
1
,
-
1
)
sl_l
=
prefix
+
slice
(
None
,
-
2
)
sl_r
=
prefix
+
slice
(
2
,
None
)
dist_l
=
self
.
_dist_l
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dist_r
=
self
.
_dist_r
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dist_c
=
self
.
_dist_c
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dx_r
=
x
[
sl_r
]
-
x
[
sl_c
]
dx_l
=
x
[
sl_c
]
-
x
[
sl_l
]
sl_l
=
prefix
+
(
slice
(
None
,
-
1
),)
# "left" slice
sl_r
=
prefix
+
(
slice
(
1
,
None
),)
# "right" slice
dpos
=
self
.
_dpos
.
reshape
((
1
,)
*
axis
+
(
nval
-
1
,))
dposc
=
self
.
_dposc
.
reshape
((
1
,)
*
axis
+
(
nval
,))
deriv
=
(
x
.
val
[
sl_r
]
-
x
.
val
[
sl_l
])
/
dpos
# defined between points
ret
=
x
.
val
.
copy_empty
()
ret
[
sl_c
]
=
(
dx_r
/
dist_r
-
dx_l
/
dist_l
)
/
sqrt
(
dist_c
)
ret
[
prefix
+
slice
(
None
,
2
)]
=
0.
res
[
prefix
+
slice
(
-
1
,
None
)]
=
0.
ret
[
sl_l
]
=
deriv
ret
[
prefix
+
(
-
1
,)]
=
0.
ret
[
sl_r
]
-=
deriv
ret
/=
sqrt
(
dposc
)
ret
[
prefix
+
(
slice
(
None
,
2
),)]
=
0.
ret
[
prefix
+
(
-
1
,)]
=
0.
return
Field
(
self
.
domain
,
val
=
ret
).
weight
(
power
=-
0.5
,
spaces
=
spaces
)
def
_adjoint_times
(
self
,
x
,
spaces
):
...
...
@@ -119,32 +124,19 @@ class LaplaceOperator(EndomorphicOperator):
else
:
axes
=
x
.
domain_axes
[
spaces
[
0
]]
axis
=
axes
[
0
]
nval
=
len
(
self
.
_d
ist_l
)
nval
=
len
(
self
.
_d
posc
)
prefix
=
(
slice
(
None
),)
*
axis
sl_c
=
prefix
+
slice
(
1
,
-
1
)
sl_l
=
prefix
+
slice
(
None
,
-
2
)
sl_r
=
prefix
+
slice
(
2
,
None
)
dist_l
=
self
.
_dist_l
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dist_r
=
self
.
_dist_r
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dist_c
=
self
.
_dist_c
.
reshape
((
1
,)
*
axis
+
(
nval
,))
dx_r
=
x
[
sl_r
]
-
x
[
sl_c
]
dx_l
=
x
[
sl_c
]
-
x
[
sl_l
]
sl_l
=
prefix
+
(
slice
(
None
,
-
1
),)
# "left" slice
sl_r
=
prefix
+
(
slice
(
1
,
None
),)
# "right" slice
dpos
=
self
.
_dpos
.
reshape
((
1
,)
*
axis
+
(
nval
-
1
,))
dposc
=
self
.
_dposc
.
reshape
((
1
,)
*
axis
+
(
nval
,))
y
=
x
.
copy
().
weight
(
power
=
0.5
).
val
y
[
sl_c
]
*=
sqrt
(
dist_c
)
y
[
prefix
+
slice
(
None
,
2
)]
=
0.
y
[
prefix
+
slice
(
-
1
,
None
)]
=
0.
ret
=
y
.
copy_empty
()
y
[
sl_c
]
/=
dist_c
ret
[
sl_c
]
=
(
y
[
sl_r
]
-
y
[
sl_c
])
/
dist_r
-
(
y
[
sl_c
]
-
y
[
sl_l
])
/
dist_l
ret
[
prefix
+
(
0
,)]
=
y
[
prefix
+
(
1
,)]
/
dist_l
[
prefix
+
(
0
,)]
ret
[
prefix
+
(
-
1
,)]
=
y
[
prefix
+
(
-
2
,)]
/
dist_r
[
prefix
+
(
-
1
,)]
y
/=
sqrt
(
dposc
)
y
[
prefix
+
(
slice
(
None
,
2
),)]
=
0.
y
[
prefix
+
(
-
1
,)]
=
0.
deriv
=
(
y
[
sl_r
]
-
y
[
sl_l
])
/
dpos
# defined between points
ret
=
x
.
val
.
copy_empty
()
ret
[
sl_l
]
=
deriv
ret
[
prefix
+
(
-
1
,)]
=
0.
ret
[
sl_r
]
-=
deriv
return
Field
(
self
.
domain
,
val
=
ret
).
weight
(
-
1
,
spaces
=
spaces
)
Laplace
:
L
=
(
dxr
/
dr
-
dxl
/
dl
)
/
sqrt
(
dc
)
adjoint
Laplace
:
tmp
=
x
/
sqrt
(
dc
)
tmp2
=
(
tmpr
-
tmp
)
/
dr
-
(
tmp
-
tmpl
)
/
dl
test/test_operators/test_laplace_operator.py
0 → 100644
View file @
b87abe36
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
import
unittest
import
numpy
as
np
import
nifty
as
ift
from
numpy.testing
import
assert_equal
,
\
assert_allclose
from
itertools
import
product
from
test.common
import
expand
from
nose.plugins.skip
import
SkipTest
class
LaplaceOperatorTests
(
unittest
.
TestCase
):
@
expand
(
product
([
None
,
False
,
True
],
[
False
,
True
],
[
10
,
100
,
1000
]))
def
test_Laplace
(
self
,
log1
,
log2
,
sz
):
s
=
ift
.
RGSpace
(
sz
,
harmonic
=
True
)
p
=
ift
.
PowerSpace
(
s
,
logarithmic
=
log1
)
L
=
ift
.
LaplaceOperator
(
p
,
logarithmic
=
log2
)
arr
=
np
.
random
.
random
(
p
.
shape
[
0
])
fp
=
ift
.
Field
(
p
,
val
=
arr
)
assert_allclose
(
L
(
fp
).
vdot
(
L
(
fp
)),
L
.
adjoint_times
(
L
(
fp
)).
vdot
(
fp
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment