Skip to content
Snippets Groups Projects
Commit 92442049 authored by Martin Reinecke's avatar Martin Reinecke
Browse files

cleanups

parent cb5ac9c6
No related branches found
No related tags found
No related merge requests found
Pipeline #
......@@ -26,7 +26,6 @@ class CriticalPowerCurvature(InvertibleOperatorMixin, EndomorphicOperator):
self.T = T
if preconditioner is None:
preconditioner = self.theta.inverse_times
self._domain = self.theta.domain
super(CriticalPowerCurvature, self).__init__(
inverter=inverter,
preconditioner=preconditioner,
......@@ -39,7 +38,7 @@ class CriticalPowerCurvature(InvertibleOperatorMixin, EndomorphicOperator):
@property
def domain(self):
return self._domain
return self.theta.domain
@property
def self_adjoint(self):
......
......@@ -17,12 +17,11 @@ class LogNormalWienerFilterCurvature(InvertibleOperatorMixin,
Parameters
----------
R: LinearOperator,
The response operator of the Wiener filter measurement.
N : EndomorphicOperator
The noise covariance.
The response operator of the Wiener filter measurement.
N: EndomorphicOperator
The noise covariance.
S: DiagonalOperator,
The prior signal covariance
The prior signal covariance
"""
def __init__(self, R, N, S, d, position, inverter, fft4exp=None, **kwargs):
......@@ -31,7 +30,6 @@ class LogNormalWienerFilterCurvature(InvertibleOperatorMixin,
self.S = S
self.d = d
self.position = position
self._domain = self.S.domain
if fft4exp is None:
self._fft = create_composed_fft_operator(self.domain,
......@@ -45,7 +43,7 @@ class LogNormalWienerFilterCurvature(InvertibleOperatorMixin,
@property
def domain(self):
return self._domain
return self.S.domain
@property
def self_adjoint(self):
......@@ -55,8 +53,6 @@ class LogNormalWienerFilterCurvature(InvertibleOperatorMixin,
def unitary(self):
return False
# ---Added properties and methods---
def _times(self, x):
part1 = self.S.inverse_times(x)
# part2 = self._exppRNRexppd * x
......@@ -72,15 +68,11 @@ class LogNormalWienerFilterCurvature(InvertibleOperatorMixin,
def _expp_sspace(self):
return exp(self._fft(self.position))
@property
@memo
def _expp(self):
return self._fft.adjoint_times(self._expp_sspace)
@property
@memo
def _Rexppd(self):
return self.R(self._expp) - self.d
expp = self._fft.adjoint_times(self._expp_sspace)
return self.R(expp) - self.d
@property
@memo
......
......@@ -13,15 +13,15 @@ class LogNormalWienerFilterEnergy(Energy):
Parameters
----------
position: Field,
The current position.
d : Field,
the data.
R : Operator,
The response operator, describtion of the measurement process.
N : EndomorphicOperator,
The noise covariance in data space.
S : EndomorphicOperator,
The prior signal covariance in harmonic space.
The current position.
d: Field,
the data.
R: Operator,
The response operator, describtion of the measurement process.
N: EndomorphicOperator,
The noise covariance in data space.
S: EndomorphicOperator,
The prior signal covariance in harmonic space.
"""
def __init__(self, position, d, R, N, S, inverter, fft4exp=None):
......@@ -47,12 +47,12 @@ class LogNormalWienerFilterEnergy(Energy):
@memo
def value(self):
return 0.5*(self.position.vdot(self._Sp) +
self._Rexppd.vdot(self._NRexppd))
self.curvature._Rexppd.vdot(self.curvature._NRexppd))
@property
@memo
def gradient(self):
return self._Sp + self._exppRNRexppd
return self._Sp + self.curvature._exppRNRexppd
@property
@memo
......@@ -62,22 +62,6 @@ class LogNormalWienerFilterEnergy(Energy):
fft4exp=self._fft,
inverter=self._inverter)
@property
def _expp(self):
return self.curvature._expp
@property
def _Rexppd(self):
return self.curvature._Rexppd
@property
def _NRexppd(self):
return self.curvature._NRexppd
@property
def _exppRNRexppd(self):
return self.curvature._exppRNRexppd
@property
@memo
def _Sp(self):
......
......@@ -10,16 +10,14 @@ class WienerFilterCurvature(InvertibleOperatorMixin, EndomorphicOperator):
for error estimates of the posterior maps. It is the
inverse of the propagator operator.
Parameters
----------
R: LinearOperator,
The response operator of the Wiener filter measurement.
N : EndomorphicOperator
The noise covariance.
The response operator of the Wiener filter measurement.
N: EndomorphicOperator
The noise covariance.
S: DiagonalOperator,
The prior signal covariance
The prior signal covariance
"""
def __init__(self, R, N, S, inverter, preconditioner=None, **kwargs):
......@@ -28,7 +26,6 @@ class WienerFilterCurvature(InvertibleOperatorMixin, EndomorphicOperator):
self.S = S
if preconditioner is None:
preconditioner = self.S.times
self._domain = self.S.domain
super(WienerFilterCurvature, self).__init__(
inverter=inverter,
preconditioner=preconditioner,
......@@ -36,7 +33,7 @@ class WienerFilterCurvature(InvertibleOperatorMixin, EndomorphicOperator):
@property
def domain(self):
return self._domain
return self.S.domain
@property
def self_adjoint(self):
......@@ -46,8 +43,6 @@ class WienerFilterCurvature(InvertibleOperatorMixin, EndomorphicOperator):
def unitary(self):
return False
# ---Added properties and methods---
def _times(self, x):
res = self.R.adjoint_times(self.N.inverse_times(self.R(x)))
res += self.S.inverse_times(x)
......
......@@ -13,14 +13,14 @@ class WienerFilterEnergy(Energy):
----------
position: Field,
The current position.
d : Field,
the data.
R : Operator,
The response operator, description of the measurement process.
N : EndomorphicOperator,
The noise covariance in data space.
S : EndomorphicOperator,
The prior signal covariance in harmonic space.
d: Field,
the data
R: LinearOperator,
The response operator, description of the measurement process.
N: EndomorphicOperator,
The noise covariance in data space.
S: EndomorphicOperator,
The prior signal covariance in harmonic space.
"""
def __init__(self, position, d, R, N, S, inverter, _j=None):
......
......@@ -31,7 +31,6 @@ class Prober(object):
https://www.python.org/download/releases/2.2.3/descrintro/#cooperation
https://rhettinger.wordpress.com/2011/05/26/super-considered-super/
"""
def __init__(self, domain=None, probe_count=8,
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment