Skip to content
Snippets Groups Projects
Commit 82beea3c authored by Torsten Ensslin's avatar Torsten Ensslin Committed by Martin Reinecke
Browse files

Demo optimization te

parent c8016819
No related branches found
No related tags found
No related merge requests found
......@@ -43,22 +43,22 @@ def exposure_2d():
if __name__ == '__main__':
# FIXME All random seeds to 42
np.random.seed(41)
np.random.seed(42)
# Choose space on which the signal field is defined
mode = 2
mode = 1
if mode == 0:
# One-dimensional regular grid with uniform exposure
# One-dimensional regular grid with uniform exposure of 10
position_space = ift.RGSpace(1024)
exposure = ift.Field.full(position_space, 1.)
exposure = ift.Field.full(position_space, 10.)
elif mode == 1:
# Two-dimensional regular grid with inhomogeneous exposure
position_space = ift.RGSpace([512, 512])
exposure = exposure_2d()
else:
# Sphere with uniform exposure
# Sphere with uniform exposure of 100
position_space = ift.HPSpace(128)
exposure = ift.Field.full(position_space, 1.)
exposure = ift.Field.full(position_space, 100.)
# Define harmonic space and harmonic transform
harmonic_space = position_space.get_default_codomain()
......
......@@ -17,8 +17,12 @@
############################################################
# Non-linear tomography
# The data is integrated lines of sight
# Random lines (set mode=0), radial lines (mode=1)
#
# The signal is a sigmoid-normal distributed field.
# The data is the field integrated along lines of sight that are
# randomly (set mode=0) or radially (mode=1) distributed
#
# Demo takes a while to compute
#############################################################
import numpy as np
......@@ -28,22 +32,22 @@ import nifty5 as ift
def random_los(n_los):
starts = list(np.random.uniform(0, 1, (n_los, 2)).T)
ends = list(0.5 + 0*np.random.uniform(0, 1, (n_los, 2)).T)
ends = list(np.random.uniform(0, 1, (n_los, 2)).T)
return starts, ends
def radial_los(n_los):
starts = list(np.random.uniform(0, 1, (n_los, 2)).T)
ends = list(np.random.uniform(0, 1, (n_los, 2)).T)
ends = list(0.5 + 0*np.random.uniform(0, 1, (n_los, 2)).T)
return starts, ends
if __name__ == '__main__':
np.random.seed(420)
np.random.seed(420) # picked for a nice field realization
# Choose between random line-of-sight response (mode=1) and radial lines
# of sight (mode=2)
mode = 1
# Choose between random line-of-sight response (mode=0) and radial lines
# of sight (mode=1)
mode = 0
position_space = ift.RGSpace([128, 128])
harmonic_space = position_space.get_default_codomain()
......@@ -62,8 +66,8 @@ if __name__ == '__main__':
# Power-law part of spectrum:
'sm': -5, # preferred power-law slope
'sv': .5, # low variance of power-law slope
'im': .4, # y-intercept mean
'iv': .3 # relatively high y-intercept variance
'im': 0, # y-intercept mean, in-/decrease for more/less contrast
'iv': .3 # y-intercept variance
}
A = ift.SLAmplitude(**dct)
......@@ -79,7 +83,7 @@ if __name__ == '__main__':
signal = ift.sigmoid(correlated_field)
# Build the line-of-sight response and define signal response
LOS_starts, LOS_ends = random_los(100) if mode == 1 else radial_los(100)
LOS_starts, LOS_ends = random_los(100) if mode == 0 else radial_los(100)
R = ift.LOSResponse(position_space, starts=LOS_starts, ends=LOS_ends)
signal_response = R(signal)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment