Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
N
NIFTy
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Container registry
Model registry
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ift
NIFTy
Commits
609ab50b
Commit
609ab50b
authored
5 years ago
by
Philipp Frank
Browse files
Options
Downloads
Patches
Plain Diff
add multi frequency demo
parent
4e97ffbe
No related branches found
No related tags found
1 merge request
!367
WIP: Normalized amplitudes pp
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
demos/getting_started_mf.py
+193
-0
193 additions, 0 deletions
demos/getting_started_mf.py
with
193 additions
and
0 deletions
demos/getting_started_mf.py
0 → 100644
+
193
−
0
View file @
609ab50b
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2019 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik.
############################################################
# Non-linear tomography
#
# The signal is a sigmoid-normal distributed field.
# The data is the field integrated along lines of sight that are
# randomly (set mode=0) or radially (mode=1) distributed
#
# Demo takes a while to compute
#############################################################
import
sys
import
numpy
as
np
import
nifty5
as
ift
class
SingleDomain
(
ift
.
LinearOperator
):
def
__init__
(
self
,
domain
,
target
):
self
.
_domain
=
ift
.
makeDomain
(
domain
)
self
.
_target
=
ift
.
makeDomain
(
target
)
self
.
_capability
=
self
.
TIMES
|
self
.
ADJOINT_TIMES
def
apply
(
self
,
x
,
mode
):
self
.
_check_input
(
x
,
mode
)
return
ift
.
from_global_data
(
self
.
_tgt
(
mode
),
x
.
to_global_data
())
def
random_los
(
n_los
):
starts
=
list
(
np
.
random
.
uniform
(
0
,
1
,
(
n_los
,
2
)).
T
)
ends
=
list
(
np
.
random
.
uniform
(
0
,
1
,
(
n_los
,
2
)).
T
)
return
starts
,
ends
def
radial_los
(
n_los
):
starts
=
list
(
np
.
random
.
uniform
(
0
,
1
,
(
n_los
,
2
)).
T
)
ends
=
list
(
0.5
+
0
*
np
.
random
.
uniform
(
0
,
1
,
(
n_los
,
2
)).
T
)
return
starts
,
ends
if
__name__
==
'
__main__
'
:
np
.
random
.
seed
(
45
)
# Choose between random line-of-sight response (mode=0) and radial lines
# of sight (mode=1)
if
len
(
sys
.
argv
)
==
2
:
mode
=
int
(
sys
.
argv
[
1
])
else
:
mode
=
0
filename
=
"
getting_started_mf_mode_{}_
"
.
format
(
mode
)
+
"
{}.png
"
npix1
,
npix2
=
128
,
128
position_space
=
ift
.
RGSpace
([
npix1
,
npix2
])
sp1
=
ift
.
RGSpace
(
npix1
)
sp2
=
ift
.
RGSpace
(
npix2
)
power_space1
=
ift
.
PowerSpace
(
sp1
.
get_default_codomain
())
power_space2
=
ift
.
PowerSpace
(
sp2
.
get_default_codomain
())
cfmaker
=
ift
.
CorrelatedFieldMaker
()
amp1
=
0.5
cfmaker
.
add_fluctuations
(
power_space1
,
amp1
,
1e-2
,
1
,
.
1
,
.
01
,
.
5
,
-
2
,
1.
,
'
amp1
'
)
cfmaker
.
add_fluctuations
(
power_space2
,
np
.
sqrt
(
1.
-
amp1
**
2
),
1e-2
,
1
,
.
1
,
.
01
,
.
5
,
-
1.5
,
.
5
,
'
amp2
'
)
correlated_field
=
cfmaker
.
finalize
(
1e-3
,
1e-6
,
''
)
sams
=
[
ift
.
from_random
(
'
normal
'
,
correlated_field
.
domain
)
for
_
in
range
(
20
)]
print
(
"
Prior expected total fluctuations:
"
+
str
(
cfmaker
.
stats
(
cfmaker
.
total_fluctuation
,
sams
)[
0
]))
A1
=
cfmaker
.
amplitudes
[
0
]
A2
=
cfmaker
.
amplitudes
[
1
]
DC
=
SingleDomain
(
correlated_field
.
target
,
position_space
)
# Apply a nonlinearity
signal
=
DC
@
ift
.
sigmoid
(
correlated_field
)
# Build the line-of-sight response and define signal response
LOS_starts
,
LOS_ends
=
random_los
(
100
)
if
mode
==
0
else
radial_los
(
100
)
R
=
ift
.
LOSResponse
(
position_space
,
starts
=
LOS_starts
,
ends
=
LOS_ends
)
signal_response
=
R
(
signal
)
# Specify noise
data_space
=
R
.
target
noise
=
.
001
N
=
ift
.
ScalingOperator
(
noise
,
data_space
)
# Generate mock signal and data
mock_position
=
ift
.
from_random
(
'
normal
'
,
signal_response
.
domain
)
data
=
signal_response
(
mock_position
)
+
N
.
draw_sample
()
# Minimization parameters
ic_sampling
=
ift
.
AbsDeltaEnergyController
(
name
=
'
Sampling
'
,
deltaE
=
0.01
,
iteration_limit
=
100
)
ic_newton
=
ift
.
AbsDeltaEnergyController
(
name
=
'
Newton
'
,
deltaE
=
0.01
,
iteration_limit
=
35
)
minimizer
=
ift
.
NewtonCG
(
ic_newton
)
# Set up likelihood and information Hamiltonian
likelihood
=
ift
.
GaussianEnergy
(
mean
=
data
,
inverse_covariance
=
N
.
inverse
)(
signal_response
)
H
=
ift
.
StandardHamiltonian
(
likelihood
,
ic_sampling
)
initial_mean
=
ift
.
MultiField
.
full
(
H
.
domain
,
0.
)
mean
=
initial_mean
plot
=
ift
.
Plot
()
plot
.
add
(
signal
(
mock_position
),
title
=
'
Ground Truth
'
)
plot
.
add
(
R
.
adjoint_times
(
data
),
title
=
'
Data
'
)
plot
.
add
([
A1
.
force
(
mock_position
)],
title
=
'
Power Spectrum 1
'
)
plot
.
add
([
A2
.
force
(
mock_position
)],
title
=
'
Power Spectrum 2
'
)
plot
.
output
(
ny
=
2
,
nx
=
2
,
xsize
=
10
,
ysize
=
10
,
name
=
filename
.
format
(
"
setup
"
))
# number of samples used to estimate the KL
N_samples
=
20
# Draw new samples to approximate the KL five times
for
i
in
range
(
10
):
# Draw new samples and minimize KL
KL
=
ift
.
MetricGaussianKL
(
mean
,
H
,
N_samples
)
KL
,
convergence
=
minimizer
(
KL
)
mean
=
KL
.
position
# Plot current reconstruction
plot
=
ift
.
Plot
()
plot
.
add
(
signal
(
mock_position
),
title
=
"
ground truth
"
)
plot
.
add
(
signal
(
KL
.
position
),
title
=
"
reconstruction
"
)
plot
.
add
([
A1
.
force
(
KL
.
position
),
A1
.
force
(
mock_position
)],
title
=
"
power1
"
)
plot
.
add
([
A2
.
force
(
KL
.
position
),
A2
.
force
(
mock_position
)],
title
=
"
power2
"
)
plot
.
output
(
nx
=
2
,
ny
=
2
,
ysize
=
10
,
xsize
=
10
,
name
=
filename
.
format
(
"
loop_{:02d}
"
.
format
(
i
)))
# Draw posterior samples
Nsamples
=
20
KL
=
ift
.
MetricGaussianKL
(
mean
,
H
,
N_samples
)
sc
=
ift
.
StatCalculator
()
scA1
=
ift
.
StatCalculator
()
scA2
=
ift
.
StatCalculator
()
powers1
=
[]
powers2
=
[]
for
sample
in
KL
.
samples
:
sc
.
add
(
signal
(
sample
+
KL
.
position
))
p1
=
A1
.
force
(
sample
+
KL
.
position
)
p2
=
A2
.
force
(
sample
+
KL
.
position
)
scA1
.
add
(
p1
)
powers1
.
append
(
p1
)
scA2
.
add
(
p2
)
powers2
.
append
(
p2
)
# Plotting
filename_res
=
filename
.
format
(
"
results
"
)
plot
=
ift
.
Plot
()
plot
.
add
(
sc
.
mean
,
title
=
"
Posterior Mean
"
)
plot
.
add
(
ift
.
sqrt
(
sc
.
var
),
title
=
"
Posterior Standard Deviation
"
)
powers1
=
[
A1
.
force
(
s
+
KL
.
position
)
for
s
in
KL
.
samples
]
powers2
=
[
A2
.
force
(
s
+
KL
.
position
)
for
s
in
KL
.
samples
]
plot
.
add
(
powers1
+
[
scA1
.
mean
,
A1
.
force
(
mock_position
)],
title
=
"
Sampled Posterior Power Spectrum 1
"
,
linewidth
=
[
1.
]
*
len
(
powers1
)
+
[
3.
,
3.
])
plot
.
add
(
powers2
+
[
scA2
.
mean
,
A2
.
force
(
mock_position
)],
title
=
"
Sampled Posterior Power Spectrum 2
"
,
linewidth
=
[
1.
]
*
len
(
powers2
)
+
[
3.
,
3.
])
plot
.
output
(
ny
=
2
,
nx
=
2
,
xsize
=
15
,
ysize
=
15
,
name
=
filename_res
)
print
(
"
Saved results as
'
{}
'
.
"
.
format
(
filename_res
))
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment