Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
13
Issues
13
List
Boards
Labels
Service Desk
Milestones
Merge Requests
11
Merge Requests
11
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
47a35227
Commit
47a35227
authored
Aug 18, 2017
by
Theo Steininger
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'laplace_fixes' into 'master'
Laplace fixes See merge request
!189
parents
56077e8d
36600a91
Pipeline
#16819
failed with stages
in 58 minutes and 34 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
77 additions
and
65 deletions
+77
-65
nifty/operators/laplace_operator/laplace_operator.py
nifty/operators/laplace_operator/laplace_operator.py
+42
-65
test/test_operators/test_laplace_operator.py
test/test_operators/test_laplace_operator.py
+35
-0
No files found.
nifty/operators/laplace_operator/laplace_operator.py
View file @
47a35227
...
...
@@ -20,17 +20,17 @@ import numpy as np
from
nifty.field
import
Field
from
nifty.spaces.power_space
import
PowerSpace
from
nifty.operators.endomorphic_operator
import
EndomorphicOperator
from
nifty
import
sqrt
import
nifty.nifty_utilities
as
utilities
class
LaplaceOperator
(
EndomorphicOperator
):
"""A irregular LaplaceOperator with free boundary and excluding monopole.
This LaplaceOperator implements the second derivative of a Field in
PowerSpace
on logarithmic or linear scale with vanishing curvature at the boundary, starting
at the second entry of the Field. The second derivative of the Field on the irregular grid
is calculated using finite differences.
This LaplaceOperator implements the second derivative of a Field in
PowerSpace on logarithmic or linear scale with vanishing curvature at the
boundary, starting at the second entry of the Field. The second derivative
of the Field on the irregular grid
is calculated using finite differences.
Parameters
----------
...
...
@@ -50,15 +50,19 @@ class LaplaceOperator(EndomorphicOperator):
self
.
_logarithmic
=
bool
(
logarithmic
)
pos
=
self
.
domain
[
0
].
kindex
.
copy
()
if
self
.
logarithmic
:
self
.
positions
=
self
.
domain
[
0
].
kindex
.
copy
()
self
.
positions
[
1
:]
=
np
.
log
(
self
.
positions
[
1
:])
self
.
positions
[
0
]
=
-
1.
else
:
self
.
positions
=
self
.
domain
[
0
].
kindex
.
copy
()
self
.
positions
[
0
]
=
-
1
self
.
fwd_dist
=
self
.
positions
[
1
:]
-
self
.
positions
[:
-
1
]
pos
[
1
:]
=
np
.
log
(
pos
[
1
:])
pos
[
0
]
=
pos
[
1
]
-
1.
self
.
_dpos
=
pos
[
1
:]
-
pos
[:
-
1
]
# defined between points
# centered distances (also has entries for the first and last point
# for convenience, but they will never affect the result)
self
.
_dposc
=
np
.
empty_like
(
pos
)
self
.
_dposc
[:
-
1
]
=
self
.
_dpos
self
.
_dposc
[
-
1
]
=
0.
self
.
_dposc
[
1
:]
+=
self
.
_dpos
self
.
_dposc
*=
0.5
@
property
def
target
(
self
):
...
...
@@ -94,24 +98,20 @@ class LaplaceOperator(EndomorphicOperator):
else
:
axes
=
x
.
domain_axes
[
spaces
[
0
]]
axis
=
axes
[
0
]
nval
=
len
(
self
.
_dposc
)
prefix
=
(
slice
(
None
),)
*
axis
fwd_dist
=
self
.
fwd_dist
.
reshape
((
1
,)
*
axis
+
self
.
fwd_dist
.
shape
)
positions
=
self
.
positions
.
reshape
((
1
,)
*
axis
+
self
.
positions
.
shape
)
sl_l
=
prefix
+
(
slice
(
None
,
-
1
),)
# "left" slice
sl_r
=
prefix
+
(
slice
(
1
,
None
),)
# "right" slice
dpos
=
self
.
_dpos
.
reshape
((
1
,)
*
axis
+
(
nval
-
1
,))
dposc
=
self
.
_dposc
.
reshape
((
1
,)
*
axis
+
(
nval
,))
deriv
=
(
x
.
val
[
sl_r
]
-
x
.
val
[
sl_l
])
/
dpos
# defined between points
ret
=
x
.
val
.
copy_empty
()
x
=
x
.
val
ret
[
prefix
+
(
slice
(
1
,
-
1
),)]
=
\
(
-
((
x
[
prefix
+
(
slice
(
1
,
-
1
),)]
-
x
[
prefix
+
(
slice
(
0
,
-
2
),)])
/
fwd_dist
[
prefix
+
(
slice
(
0
,
-
1
),)])
+
((
x
[
prefix
+
(
slice
(
2
,
None
),)]
-
x
[
prefix
+
(
slice
(
1
,
-
1
),)])
/
fwd_dist
[
prefix
+
(
slice
(
1
,
None
),)]))
ret
[
prefix
+
(
slice
(
1
,
-
1
),)]
/=
\
(
positions
[
prefix
+
(
slice
(
2
,
None
),)]
-
positions
[
prefix
+
(
slice
(
None
,
-
2
),)])
ret
*=
2.
ret
[
prefix
+
(
slice
(
0
,
2
),)]
=
0
ret
[
prefix
+
(
slice
(
-
1
,
-
1
),)]
=
0
ret
[
prefix
+
(
slice
(
2
,
None
),)]
*=
\
np
.
sqrt
(
fwd_dist
)[
prefix
+
(
slice
(
1
,
None
),)]
ret
[
sl_l
]
=
deriv
ret
[
prefix
+
(
-
1
,)]
=
0.
ret
[
sl_r
]
-=
deriv
ret
/=
sqrt
(
dposc
)
ret
[
prefix
+
(
slice
(
None
,
2
),)]
=
0.
ret
[
prefix
+
(
-
1
,)]
=
0.
return
Field
(
self
.
domain
,
val
=
ret
).
weight
(
power
=-
0.5
,
spaces
=
spaces
)
def
_adjoint_times
(
self
,
x
,
spaces
):
...
...
@@ -124,42 +124,19 @@ class LaplaceOperator(EndomorphicOperator):
else
:
axes
=
x
.
domain_axes
[
spaces
[
0
]]
axis
=
axes
[
0
]
nval
=
len
(
self
.
_dposc
)
prefix
=
(
slice
(
None
),)
*
axis
fwd_dist
=
self
.
fwd_dist
.
reshape
((
1
,)
*
axis
+
self
.
fwd_dist
.
shape
)
positions
=
self
.
positions
.
reshape
((
1
,)
*
axis
+
self
.
positions
.
shape
)
sl_l
=
prefix
+
(
slice
(
None
,
-
1
),)
# "left" slice
sl_r
=
prefix
+
(
slice
(
1
,
None
),)
# "right" slice
dpos
=
self
.
_dpos
.
reshape
((
1
,)
*
axis
+
(
nval
-
1
,))
dposc
=
self
.
_dposc
.
reshape
((
1
,)
*
axis
+
(
nval
,))
y
=
x
.
copy
().
weight
(
power
=
0.5
).
val
y
[
prefix
+
(
slice
(
2
,
None
),)]
*=
\
np
.
sqrt
(
fwd_dist
)[
prefix
+
(
slice
(
1
,
None
),)]
y
[
prefix
+
(
slice
(
0
,
2
),)]
=
0
y
[
prefix
+
(
slice
(
-
1
,
-
1
),)]
=
0
ret
=
y
.
copy_empty
()
y
[
prefix
+
(
slice
(
1
,
-
1
),)]
/=
\
(
positions
[
prefix
+
(
slice
(
2
,
None
),)]
-
positions
[
prefix
+
(
slice
(
None
,
-
2
),)])
y
*=
2
ret
[
prefix
+
(
slice
(
1
,
-
1
),)]
=
\
(
-
y
[
prefix
+
(
slice
(
1
,
-
1
),)]
/
fwd_dist
[
prefix
+
(
slice
(
0
,
-
1
),)]
-
y
[
prefix
+
(
slice
(
1
,
-
1
),)]
/
fwd_dist
[
prefix
+
(
slice
(
1
,
None
),)])
ret
[
prefix
+
(
slice
(
0
,
-
2
),)]
+=
\
y
[
prefix
+
(
slice
(
1
,
-
1
),)]
/
fwd_dist
[
prefix
+
(
slice
(
0
,
-
1
),)]
ret
[
prefix
+
(
slice
(
2
,
None
),)]
+=
\
y
[
prefix
+
(
slice
(
1
,
-
1
),)]
/
fwd_dist
[
prefix
+
(
slice
(
1
,
None
),)]
y
/=
sqrt
(
dposc
)
y
[
prefix
+
(
slice
(
None
,
2
),)]
=
0.
y
[
prefix
+
(
-
1
,)]
=
0.
deriv
=
(
y
[
sl_r
]
-
y
[
sl_l
])
/
dpos
# defined between points
ret
=
x
.
val
.
copy_empty
()
ret
[
sl_l
]
=
deriv
ret
[
prefix
+
(
-
1
,)]
=
0.
ret
[
sl_r
]
-=
deriv
return
Field
(
self
.
domain
,
val
=
ret
).
weight
(
-
1
,
spaces
=
spaces
)
def
_irregular_laplace
(
self
,
x
):
ret
=
np
.
zeros_like
(
x
)
ret
[
1
:
-
1
]
=
(
-
(
x
[
1
:
-
1
]
-
x
[
0
:
-
2
])
/
self
.
fwd_dist
[:
-
1
]
+
(
x
[
2
:]
-
x
[
1
:
-
1
])
/
self
.
fwd_dist
[
1
:])
ret
[
1
:
-
1
]
/=
self
.
positions
[
2
:]
-
self
.
positions
[:
-
2
]
ret
*=
2.
return
ret
def
_irregular_adj_laplace
(
self
,
x
):
ret
=
np
.
zeros_like
(
x
)
y
=
x
.
copy
()
y
[
1
:
-
1
]
/=
self
.
positions
[
2
:]
-
self
.
positions
[:
-
2
]
y
*=
2
ret
[
1
:
-
1
]
=
-
y
[
1
:
-
1
]
/
self
.
fwd_dist
[:
-
1
]
-
y
[
1
:
-
1
]
/
self
.
fwd_dist
[
1
:]
ret
[
0
:
-
2
]
+=
y
[
1
:
-
1
]
/
self
.
fwd_dist
[:
-
1
]
ret
[
2
:]
+=
y
[
1
:
-
1
]
/
self
.
fwd_dist
[
1
:]
return
ret
test/test_operators/test_laplace_operator.py
0 → 100644
View file @
47a35227
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2017 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
import
unittest
import
numpy
as
np
import
nifty
as
ift
from
numpy.testing
import
assert_allclose
from
itertools
import
product
from
test.common
import
expand
class
LaplaceOperatorTests
(
unittest
.
TestCase
):
@
expand
(
product
([
None
,
False
,
True
],
[
False
,
True
],
[
10
,
100
,
1000
]))
def
test_Laplace
(
self
,
log1
,
log2
,
sz
):
s
=
ift
.
RGSpace
(
sz
,
harmonic
=
True
)
p
=
ift
.
PowerSpace
(
s
,
logarithmic
=
log1
)
L
=
ift
.
LaplaceOperator
(
p
,
logarithmic
=
log2
)
arr
=
np
.
random
.
random
(
p
.
shape
[
0
])
fp
=
ift
.
Field
(
p
,
val
=
arr
)
assert_allclose
(
L
(
fp
).
vdot
(
L
(
fp
)),
L
.
adjoint_times
(
L
(
fp
)).
vdot
(
fp
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment