Skip to content
Snippets Groups Projects
Commit 444c0c2d authored by Theo Steininger's avatar Theo Steininger
Browse files

Merge branch 'Real-Field_Synthesizer' into 'master'

Real field synthesizer

See merge request !125
parents b15cc6fa f222436d
No related branches found
No related tags found
3 merge requests!131Master,!127Master,!125Real field synthesizer
Pipeline #
numpy numpy
cython
mpi4py mpi4py
matplotlib matplotlib
plotly plotly
......
numpy numpy
cython
nose nose
parameterized parameterized
coverage coverage
......
...@@ -17,6 +17,8 @@ ...@@ -17,6 +17,8 @@
# along with this program. If not, see <http://www.gnu.org/licenses/>. # along with this program. If not, see <http://www.gnu.org/licenses/>.
from __future__ import division from __future__ import division
import itertools
import numpy as np import numpy as np
from keepers import Versionable,\ from keepers import Versionable,\
...@@ -104,6 +106,7 @@ class Field(Loggable, Versionable, object): ...@@ -104,6 +106,7 @@ class Field(Loggable, Versionable, object):
distributed_data_object distributed_data_object
""" """
# ---Initialization methods--- # ---Initialization methods---
def __init__(self, domain=None, val=None, dtype=None, def __init__(self, domain=None, val=None, dtype=None,
...@@ -554,14 +557,12 @@ class Field(Loggable, Versionable, object): ...@@ -554,14 +557,12 @@ class Field(Loggable, Versionable, object):
inplace=True) inplace=True)
if real_signal: if real_signal:
for power_space_index in spaces: result_val_list = [self._hermitian_decomposition(
harmonic_domain = result_domain[power_space_index] result_domain,
result_val_list = [harmonic_domain.hermitian_decomposition( result_val,
result_val, spaces,
axes=result.domain_axes[power_space_index], result_list[0].domain_axes)[0]
preserve_gaussian_variance=True)[0] for result_val in result_val_list]
for (result, result_val)
in zip(result_list, result_val_list)]
# store the result into the fields # store the result into the fields
[x.set_val(new_val=y, copy=False) for x, y in [x.set_val(new_val=y, copy=False) for x, y in
...@@ -574,6 +575,46 @@ class Field(Loggable, Versionable, object): ...@@ -574,6 +575,46 @@ class Field(Loggable, Versionable, object):
return result return result
@staticmethod
def _hermitian_decomposition(domain, val, spaces, domain_axes):
# hermitianize for the first space
(h, a) = domain[spaces[0]].hermitian_decomposition(
val,
domain_axes[spaces[0]])
# hermitianize all remaining spaces using the iterative formula
for space in xrange(1, len(spaces)):
(hh, ha) = \
domain[space].hermitian_decomposition(h, domain_axes[space])
(ah, aa) = \
domain[space].hermitian_decomposition(a, domain_axes[space])
c = (hh - ha - ah + aa).conjugate()
h = (val + c)/2.
a = (val - c)/2.
# correct variance
fixed_points = [domain[i].hermitian_fixed_points() for i in spaces]
# check if there was at least one flipping during hermitianization
flipped_Q = np.any([fp is not None for fp in fixed_points])
# if the array got flipped, correct the variance
if flipped_Q:
h *= np.sqrt(2)
a *= np.sqrt(2)
fixed_points = [[fp] if fp is None else fp for fp in fixed_points]
for product_point in itertools.product(*fixed_points):
slice_object = np.array((slice(None), )*len(val.shape),
dtype=np.object)
for i, sp in enumerate(spaces):
point_component = product_point[i]
if point_component is None:
point_component = slice(None)
slice_object[list(domain_axes[sp])] = point_component
slice_object = tuple(slice_object)
h[slice_object] /= np.sqrt(2)
a[slice_object] /= np.sqrt(2)
return (h, a)
def _spec_to_rescaler(self, spec, result_list, power_space_index): def _spec_to_rescaler(self, spec, result_list, power_space_index):
power_space = self.domain[power_space_index] power_space = self.domain[power_space_index]
......
...@@ -94,9 +94,12 @@ class LMSpace(Space): ...@@ -94,9 +94,12 @@ class LMSpace(Space):
hermitian_part = x.copy_empty() hermitian_part = x.copy_empty()
anti_hermitian_part = x.copy_empty() anti_hermitian_part = x.copy_empty()
hermitian_part[:] = x.real hermitian_part[:] = x.real
anti_hermitian_part[:] = x.imag anti_hermitian_part[:] = x.imag * 1j
return (hermitian_part, anti_hermitian_part) return (hermitian_part, anti_hermitian_part)
def hermitian_fixed_points(self):
return None
# ---Mandatory properties and methods--- # ---Mandatory properties and methods---
@property @property
......
...@@ -110,7 +110,7 @@ class RGSpace(Space): ...@@ -110,7 +110,7 @@ class RGSpace(Space):
hermitian_part /= 2. hermitian_part /= 2.
# use subtraction since it is faster than flipping another time # use subtraction since it is faster than flipping another time
anti_hermitian_part = (x-hermitian_part)/1j anti_hermitian_part = (x-hermitian_part)
if preserve_gaussian_variance: if preserve_gaussian_variance:
hermitian_part, anti_hermitian_part = \ hermitian_part, anti_hermitian_part = \
...@@ -120,6 +120,18 @@ class RGSpace(Space): ...@@ -120,6 +120,18 @@ class RGSpace(Space):
return (hermitian_part, anti_hermitian_part) return (hermitian_part, anti_hermitian_part)
def hermitian_fixed_points(self):
shape = self.shape
mid_index = np.array(shape)//2
ndlist = [2 if (shape[i] % 2 == 0) else 1 for i in xrange(len(shape))]
ndlist = tuple(ndlist)
odd_axes_list = np.array([1 if (shape[i] % 2 == 1) else 0
for i in xrange(len(shape))])
fixed_points = []
for i in np.ndindex(ndlist):
fixed_points += [tuple((i+odd_axes_list) * mid_index)]
return fixed_points
def _hermitianize_correct_variance(self, hermitian_part, def _hermitianize_correct_variance(self, hermitian_part,
anti_hermitian_part, axes): anti_hermitian_part, axes):
# Correct the variance by multiplying sqrt(2) # Correct the variance by multiplying sqrt(2)
...@@ -145,8 +157,9 @@ class RGSpace(Space): ...@@ -145,8 +157,9 @@ class RGSpace(Space):
return hermitian_part, anti_hermitian_part return hermitian_part, anti_hermitian_part
def _hermitianize_inverter(self, x, axes): def _hermitianize_inverter(self, x, axes):
shape = x.shape
# calculate the number of dimensions the input array has # calculate the number of dimensions the input array has
dimensions = len(x.shape) dimensions = len(shape)
# prepare the slicing object which will be used for mirroring # prepare the slicing object which will be used for mirroring
slice_primitive = [slice(None), ] * dimensions slice_primitive = [slice(None), ] * dimensions
# copy the input data # copy the input data
...@@ -158,11 +171,17 @@ class RGSpace(Space): ...@@ -158,11 +171,17 @@ class RGSpace(Space):
# flip in the desired directions # flip in the desired directions
for i in axes: for i in axes:
slice_picker = slice_primitive[:] slice_picker = slice_primitive[:]
slice_picker[i] = slice(1, None, None) if shape[i] % 2 == 0:
slice_picker[i] = slice(1, None, None)
else:
slice_picker[i] = slice(None)
slice_picker = tuple(slice_picker) slice_picker = tuple(slice_picker)
slice_inverter = slice_primitive[:] slice_inverter = slice_primitive[:]
slice_inverter[i] = slice(None, 0, -1) if shape[i] % 2 == 0:
slice_inverter[i] = slice(None, 0, -1)
else:
slice_inverter[i] = slice(None, None, -1)
slice_inverter = tuple(slice_inverter) slice_inverter = tuple(slice_inverter)
try: try:
......
...@@ -116,7 +116,7 @@ class LMSpaceFunctionalityTests(unittest.TestCase): ...@@ -116,7 +116,7 @@ class LMSpaceFunctionalityTests(unittest.TestCase):
real) real)
assert_almost_equal( assert_almost_equal(
l.hermitian_decomposition(distributed_data_object(x))[1], l.hermitian_decomposition(distributed_data_object(x))[1],
imag) imag*1j)
@expand(get_weight_configs()) @expand(get_weight_configs())
def test_weight(self, x, power, axes, inplace, expected): def test_weight(self, x, power, axes, inplace, expected):
......
...@@ -162,7 +162,7 @@ def get_hermitian_configs(): ...@@ -162,7 +162,7 @@ def get_hermitian_configs():
[0.37928780+0.j, 0.33013206+0.26511434j, 0.48235714+0.j, [0.37928780+0.j, 0.33013206+0.26511434j, 0.48235714+0.j,
0.33013206-0.26511434j], 0.33013206-0.26511434j],
[0.47773437+0.17342852j, 0.31059374+0.02379381j, 0.64003551-0.23838932j, [0.47773437+0.17342852j, 0.31059374+0.02379381j, 0.64003551-0.23838932j,
0.27824437-0.0197826j]]) 0.27824437-0.0197826j]])*1j
h_1_x = np.array([ h_1_x = np.array([
[[0.23987021+0.41617749j, 0.34605012+0.55462234j, 0.07947035+0.73360723j, [[0.23987021+0.41617749j, 0.34605012+0.55462234j, 0.07947035+0.73360723j,
...@@ -205,7 +205,7 @@ def get_hermitian_configs(): ...@@ -205,7 +205,7 @@ def get_hermitian_configs():
0.64466122-0.10318736j], 0.64466122-0.10318736j],
[0.19076379+0.j, 0.49389371+0.03664104j, 0.85091112+0.j, [0.19076379+0.j, 0.49389371+0.03664104j, 0.85091112+0.j,
0.49389371-0.03664104j]] 0.49389371-0.03664104j]]
]) ])*1j
return [ return [
[h_0_x, None, h_0_res_real, h_0_res_imag], [h_0_x, None, h_0_res_real, h_0_res_imag],
[h_1_x, (2,), h_1_res_real, h_1_res_imag] [h_1_x, (2,), h_1_res_real, h_1_res_imag]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment