Skip to content
Snippets Groups Projects
Commit 1e157696 authored by Martin Reinecke's avatar Martin Reinecke
Browse files

operator chaining

parent e288f5be
No related branches found
No related tags found
No related merge requests found
......@@ -61,7 +61,7 @@ if __name__ == '__main__':
# Generate mock data
d_space = R.target[0]
p = lambda inp: R(sky(inp))
p = R.chain(sky)
mock_position = ift.from_random('normal', harmonic_space)
pp = p(mock_position)
data = np.random.binomial(1, pp.to_global_data().astype(np.float64))
......
......@@ -79,7 +79,7 @@ if __name__ == '__main__':
# Generate mock data
d_space = R.target[0]
lamb = lambda inp: R(sky(inp))
lamb = R.chain(sky)
mock_position = ift.from_random('normal', domain)
#ift.extra.check_value_gradient_consistency2(lamb, mock_position)
#testl = GaussianEnergy2(None, M)
......
......@@ -53,7 +53,7 @@ if __name__ == '__main__':
R = ift.LOSResponse(position_space, starts=LOS_starts,
ends=LOS_ends)
# build signal response model and model likelihood
signal_response = lambda inp: R(signal(inp))
signal_response = R.chain(signal)
# specify noise
data_space = R.target
noise = .001
......@@ -65,7 +65,7 @@ if __name__ == '__main__':
data = signal_response(MOCK_POSITION) + N.draw_sample()
# set up model likelihood
likelihood = lambda inp: ift.GaussianEnergy(mean=data, covariance=N)(signal_response(inp))
likelihood = ift.GaussianEnergy(mean=data, covariance=N).chain(signal_response)
# set up minimization and inversion schemes
ic_cg = ift.GradientNormController(iteration_limit=10)
......
......@@ -97,7 +97,7 @@ d = ift.from_global_data(d_space, y)
N = ift.DiagonalOperator(ift.from_global_data(d_space, var))
IC = ift.GradientNormController(tol_abs_gradnorm=1e-8)
likelihood = lambda inp: ift.GaussianEnergy(d, N)(R(inp))
likelihood = ift.GaussianEnergy(d, N).chain(R)
H = ift.Hamiltonian(likelihood, IC)
H = ift.EnergyAdapter(params, H)
H = H.make_invertible(IC)
......
......@@ -16,8 +16,6 @@ from .domains.log_rg_space import LogRGSpace
from .domain_tuple import DomainTuple
from .field import Field
from .nonlinearities import Exponential, Linear, PositiveTanh, Tanh
from .operators.central_zero_padder import CentralZeroPadder
from .operators.diagonal_operator import DiagonalOperator
from .operators.dof_distributor import DOFDistributor
......
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# Copyright(C) 2013-2018 Max-Planck-Society
#
# NIFTy is being developed at the Max-Planck-Institut fuer Astrophysik
# and financially supported by the Studienstiftung des deutschen Volkes.
from __future__ import absolute_import, division, print_function
from .compat import *
from .sugar import exp, full, tanh
class Linear(object):
def __call__(self, x):
return x
def derivative(self, x):
return full(x.domain, 1.)
def hessian(self, x):
return full(x.domain, 0.)
class Exponential(object):
def __call__(self, x):
return exp(x)
def derivative(self, x):
return exp(x)
def hessian(self, x):
return exp(x)
class Tanh(object):
def __call__(self, x):
return tanh(x)
def derivative(self, x):
return (1. - tanh(x)**2)
def hessian(self, x):
return - 2. * tanh(x) * (1. - tanh(x)**2)
class PositiveTanh(object):
def __call__(self, x):
return 0.5 * tanh(x) + 0.5
def derivative(self, x):
return 0.5 * (1. - tanh(x)**2)
def hessian(self, x):
return - tanh(x) * (1. - tanh(x)**2)
......@@ -9,6 +9,13 @@ class Operator(NiftyMetaBase()):
domain, and can also provide the Jacobian.
"""
def chain(self, x):
if not callable(x):
raise TypeError("callable needed")
ops1 = self._ops if isinstance(self, OpChain) else (self,)
ops2 = x._ops if isinstance(x, OpChain) else (x,)
return OpChain(ops1+ops2)
def __call__(self, x):
"""Returns transformed x
......@@ -23,3 +30,13 @@ class Operator(NiftyMetaBase()):
output
"""
raise NotImplementedError
class OpChain(Operator):
def __init__(self, ops):
self._ops = tuple(ops)
def __call__(self, x):
for op in reversed(self._ops):
x = op(x)
return x
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment