Skip to content
Snippets Groups Projects
Commit 061fd215 authored by Theo Steininger's avatar Theo Steininger
Browse files

Docstring refactoring.

parent 6f9030f6
No related branches found
No related tags found
1 merge request!95added all the docstrings for PowerSpace and changed PowerSpace.log to PowerSpace…
Pipeline #
......@@ -30,7 +30,9 @@ class _PowerIndexFactory(object):
if key not in self.power_indices_storage:
self.power_indices_storage[key] = \
PowerIndices(domain, distribution_strategy,
logarithmic=logarithmic, nbin=nbin, binbounds=binbounds)
logarithmic=logarithmic,
nbin=nbin,
binbounds=binbounds)
power_indices = self.power_indices_storage[key]
power_index = power_indices.get_index_dict(logarithmic=logarithmic,
nbin=nbin,
......
......@@ -113,7 +113,8 @@ class PowerIndices(object):
return self._cast_config_helper(**temp_config_dict)
else:
defaults = self.default_parameters
temp_logarithmic = kwargs.get("logarithmic", defaults['logarithmic'])
temp_logarithmic = kwargs.get("logarithmic",
defaults['logarithmic'])
temp_nbin = kwargs.get("nbin", defaults['nbin'])
temp_binbounds = kwargs.get("binbounds", defaults['binbounds'])
......
......@@ -27,45 +27,55 @@ from nifty.spaces.rg_space import RGSpace
class PowerSpace(Space):
""" NIFTY class for spaces of power spectra.
Parameters
----------
harmonic_partner : Space
The harmonic Space of which this is the power space.
distribution_strategy : str *optional*
The distribution strategy used for the distributed_data_objects
derived from this PowerSpace, e.g. the pindex.
(default : 'not')
logarithmic : bool *optional*
True if logarithmic binning should be used (default : False).
nbin : {int, None} *optional*
The number of bins that should be used for power spectrum binning
(default : None).
if nbin == None, then nbin is set to the length of kindex.
binbounds : {list, array-like} *optional*
Array-like inner boundaries of the used bins of the default
indices.
(default : None)
if binbounds == None :
Calculates the bounds from the kindex while applying the
logarithmic and nbin keywords.
Attributes
----------
pindex : distributed_data_object
TODO add description
kindex : numpy.ndarray
TODO add description
pundex : numpy.ndarray
TODO add description
rho : numpy.ndarray
The amount of k-modes that get mapped to one power bin is given by
rho.
Notes
-----
A power space is the result of a projection of a harmonic space where
k-modes of equal length get mapped to one power index.
"""
# ---Overwritten properties and methods---
def __init__(self, harmonic_partner=RGSpace((1,)),
distribution_strategy='not',
logarithmic=False, nbin=None, binbounds=None):
"""Sets the attributes for a PowerSpace class instance.
Parameters
----------
harmonic_partner : Space
The harmonic Space of which this is the power space.
distribution_strategy : str *optional*
The distribution strategy of a d2o-object represeting a field over this PowerSpace.
(default : 'not')
logarithmic : bool *optional*
True if logarithmic binning should be used.
(default : False)
nbin : {int, None} *optional*
The number of bins this space has.
(default : None) if nbin == None : It takes the nbin from its harmonic_partner
binbounds : {list, array} *optional*
Array-like inner boundaries of the used bins of the default
indices.
(default : None) if binbounds == None : Calculates the bounds from the kindex and corrects for logartihmic scale
Notes
-----
A power space is the result of a projection of a harmonic space where multiple k-modes get mapped to one power index.
This can be regarded as a response operator :math:`R` going from harmonic space to power space.
An array giving this map is stored in pindex (array which says in which power box a k-mode gets projected)
An array for the adjoint of :math:`R` is given by kindex, which is an array of arrays stating which k-mode got mapped to a power index
The a right-inverse to :math:`R` is given by the pundex which is an array giving one k-mode that maps to a power bin for every power bin.
The amount of k-modes that get mapped to one power bin is given by rho. This is :math:`RR^\dagger` in the language of this projection operator
Returns
-------
None.
"""
#FIXME: default probably not working for log and normal scale
super(PowerSpace, self).__init__()
self._ignore_for_hash += ['_pindex', '_kindex', '_rho', '_pundex',
'_k_array']
......@@ -97,22 +107,28 @@ class PowerSpace(Space):
self._k_array = power_index['k_array']
def pre_cast(self, x, axes):
"""Casts power spectra to discretized power spectra.
This function takes an array or a function. If it is an array it does nothing,
otherwise it intepretes the function as power spectrum and evaluates it at every
k-mode.
""" Casts power spectrum functions to discretized power spectra.
This function takes an array or a function. If it is an array it does
nothing, otherwise it interpretes the function as power spectrum and
evaluates it at every k-mode.
Parameters
----------
x : {array-like, function array-like -> array-like}
power spectrum given either in discretized form or implicitly as a function
axes : {tuple, int} *optional*
does nothing
(default : None)
power spectrum given either in discretized form or implicitly as a
function
axes : tuple of ints
Specifies the axes of x which correspond to this space. For
explicifying the power spectrum function, this is ignored.
Returns
-------
array-like : discretized power spectrum
array-like
discretized power spectrum
"""
if callable(x):
return x(self.kindex)
else:
......@@ -176,86 +192,60 @@ class PowerSpace(Space):
@property
def harmonic_partner(self):
"""Returns the Space of which this is the power space.
Returns
-------
Space : The harmonic Space of which this is the power space.
""" Returns the Space of which this is the power space.
"""
return self._harmonic_partner
@property
def logarithmic(self):
"""Returns a True if logarithmic binning is used.
Returns
-------
Bool : True if for this PowerSpace logarithmic binning is used.
""" Returns True if logarithmic binning is used.
"""
return self._logarithmic
@property
def nbin(self):
"""Returns the number of power bins.
Returns
-------
int : The number of bins this space has.
""" Returns the number of power bins if specfied during initialization.
"""
return self._nbin
@property
def binbounds(self):
""" Inner boundaries of the used bins of the default
indices.
Returns
-------
{list, array} : the inner boundaries of the used bins in the used scale, as they were
set in __init__ or computed.
""" Inner boundaries of the used bins if specfied during initialization.
"""
# FIXME check wether this returns something sensible if 'None' was set in __init__
return self._binbounds
@property
def pindex(self):
"""Index of the Fourier grid points that belong to a specific power index
Returns
-------
distributed_data_object : Index of the Fourier grid points in a distributed_data_object.
"""
""" A distributed_data_objects having the shape of the harmonic partner
space containing the indices of the power bin a pixel belongs to.
"""
return self._pindex
@property
def kindex(self):
"""Array of all k-vector lengths.
Returns
-------
ndarray : Array which states for each k-mode which power index it maps to (adjoint to pindex)
"""
""" Sorted array of all k-modes.
"""
return self._kindex
@property
def rho(self):
"""Degeneracy factor of the individual k-vectors.
ndarray : Array stating how many k-modes are mapped to one power index for every power index
"""
"""Degeneracy factor of the individual k-vectors.
"""
return self._rho
@property
def pundex(self):
"""List of one k-mode per power bin which is in the bin.
Returns
-------
array-like : An array for which the n-th entry is an example one k-mode which belongs to the n-th power bin
"""
""" An array for which the n-th entry gives the flat index of the
first occurence of a k-vector with length==kindex[n] in the
k_array.
"""
return self._pundex
@property
def k_array(self):
"""This contains distances to zero for every k-mode of the harmonic partner.
Returns
-------
array-like : An array containing distances to the zero mode for every k-mode of the harmonic partner.
"""
""" An array containing distances to the grid center (i.e. zero-mode)
for every k-mode in the grid of the harmonic partner space.
"""
return self._k_array
# ---Serialization---
......@@ -284,7 +274,8 @@ class PowerSpace(Space):
# call instructor so that classes are properly setup
super(PowerSpace, new_ps).__init__()
# set all values
new_ps._harmonic_partner = repository.get('harmonic_partner', hdf5_group)
new_ps._harmonic_partner = repository.get('harmonic_partner',
hdf5_group)
new_ps._logarithmic = hdf5_group['logarithmic'][()]
exec('new_ps._nbin = ' + hdf5_group.attrs['nbin'])
exec('new_ps._binbounds = ' + hdf5_group.attrs['binbounds'])
......
......@@ -29,7 +29,7 @@ from types import NoneType
from test.common import expand
# [harmonic_domain, distribution_strategy,
# log, nbin, binbounds, expected]
# logarithmic, nbin, binbounds, expected]
CONSTRUCTOR_CONFIGS = [
[1, 'not', False, None, None, {'error': ValueError}],
[RGSpace((8,)), 'not', False, None, None, {'error': ValueError}],
......@@ -95,7 +95,7 @@ def get_weight_configs():
class PowerSpaceInterfaceTest(unittest.TestCase):
@expand([
['harmonic_domain', Space],
['log', bool],
['logarithmic', bool],
['nbin', (int, NoneType)],
['binbounds', (list, NoneType)],
['pindex', distributed_data_object],
......@@ -112,17 +112,19 @@ class PowerSpaceInterfaceTest(unittest.TestCase):
class PowerSpaceFunctionalityTest(unittest.TestCase):
@expand(CONSTRUCTOR_CONFIGS)
def test_constructor(self, harmonic_domain, distribution_strategy, log,
nbin, binbounds, expected):
def test_constructor(self, harmonic_domain, distribution_strategy,
logarithmic, nbin, binbounds, expected):
if 'error' in expected:
with assert_raises(expected['error']):
PowerSpace(harmonic_domain=harmonic_domain,
distribution_strategy=distribution_strategy,
log=log, nbin=nbin, binbounds=binbounds)
logarithmic=logarithmic, nbin=nbin,
binbounds=binbounds)
else:
p = PowerSpace(harmonic_domain=harmonic_domain,
distribution_strategy=distribution_strategy,
log=log, nbin=nbin, binbounds=binbounds)
logarithmic=logarithmic, nbin=nbin,
binbounds=binbounds)
for key, value in expected.iteritems():
if isinstance(value, np.ndarray):
assert_almost_equal(getattr(p, key), value)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment