Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
N
NIFTy
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
13
Issues
13
List
Boards
Labels
Service Desk
Milestones
Merge Requests
9
Merge Requests
9
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
ift
NIFTy
Commits
030321eb
Commit
030321eb
authored
Nov 17, 2019
by
Philipp Haim
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
First working implementation
parent
db4db3c2
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
32 additions
and
34 deletions
+32
-34
nifty5/library/correlated_fields.py
nifty5/library/correlated_fields.py
+32
-34
No files found.
nifty5/library/correlated_fields.py
View file @
030321eb
...
...
@@ -39,15 +39,18 @@ from ..sugar import from_global_data, from_random, full, makeDomain, get_default
def
_reshaper
(
x
,
N
):
x
=
np
.
asfarray
(
x
)
if
x
.
shape
in
[(),
(
1
,)]:
return
np
.
full
(
N
,
x
)
if
N
!=
1
else
x
.
reshape
(())
return
np
.
full
(
N
,
x
)
if
N
!=
0
else
x
.
reshape
(())
elif
x
.
shape
==
(
N
,):
return
x
else
:
raise
TypeError
(
"Shape of parameters cannot be interpreted"
)
def
_lognormal_moments
(
mean
,
sig
,
N
=
1
):
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
def
_lognormal_moments
(
mean
,
sig
,
N
=
0
):
if
N
==
0
:
mean
,
sig
=
np
.
asfarray
(
mean
),
np
.
asfarray
(
sig
)
else
:
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
assert
np
.
all
(
mean
>
0
)
assert
np
.
all
(
sig
>
0
)
logsig
=
np
.
sqrt
(
np
.
log
((
sig
/
mean
)
**
2
+
1
))
...
...
@@ -55,12 +58,13 @@ def _lognormal_moments(mean, sig, N = 1):
return
logmean
,
logsig
def
_normal
(
mean
,
sig
,
key
,
N
=
1
):
if
N
==
1
:
def
_normal
(
mean
,
sig
,
key
,
N
=
0
):
if
N
==
0
:
domain
=
DomainTuple
.
scalar_domain
()
mean
,
sig
=
np
.
asfarray
(
mean
),
np
.
asfarray
(
sig
)
else
:
domain
=
UnstructuredDomain
(
N
)
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
mean
,
sig
=
(
_reshaper
(
param
,
N
)
for
param
in
(
mean
,
sig
))
return
Adder
(
from_global_data
(
domain
,
mean
))
@
(
DiagonalOperator
(
from_global_data
(
domain
,
sig
))
@
ducktape
(
domain
,
None
,
key
))
...
...
@@ -280,16 +284,17 @@ class _Amplitude(Operator):
assert
isinstance
(
asperity
,
Operator
)
assert
isinstance
(
loglogavgslope
,
Operator
)
N_copies
=
max
(
dofdex
)
+
1
assert
N_copies
>
0
if
N_copies
>
1
:
if
len
(
dofdex
)
>
0
:
N_copies
=
max
(
dofdex
)
+
1
space
=
1
distributed_tgt
=
makeDomain
((
UnstructuredDomain
(
len
(
dofdex
)),
target
))
target
=
makeDomain
((
UnstructuredDomain
(
N_copies
),
target
))
Distributor
=
_Distributor
(
dofdex
,
target
,
distributed_tgt
,
0
)
else
:
N_copies
=
0
space
=
0
target
=
makeDomain
(
target
)
distributed_tgt
=
target
=
makeDomain
(
target
)
azm_expander
=
ContractionOperator
(
distributed_tgt
,
spaces
=
space
).
adjoint
assert
isinstance
(
target
[
space
],
PowerSpace
)
twolog
=
_TwoLogIntegrations
(
target
,
space
)
...
...
@@ -337,12 +342,12 @@ class _Amplitude(Operator):
sigma
=
sig_flex
*
(
Adder
(
shift
)
@
sig_asp
).
sqrt
()
smooth
=
_SlopeRemover
(
target
,
space
)
@
twolog
@
(
sigma
*
xi
)
op
=
_Normalization
(
target
,
space
)
@
(
slope
+
smooth
)
if
space
==
1
:
if
N_copies
>
0
:
op
=
Distributor
@
op
sig_fluc
=
Distributor
@
sig_fluc
op
=
(
Distributor
@
Adder
(
vol0
))
@
(
sig_fluc
*
(
ps
_expander
@
azm
.
one_over
())
*
op
)
op
=
Adder
(
Distributor
(
vol0
))
@
(
sig_fluc
*
(
azm
_expander
@
azm
.
one_over
())
*
op
)
else
:
op
=
(
Adder
(
vol0
))
@
(
sig_fluc
*
(
ps
_expander
@
azm
.
one_over
())
*
op
)
op
=
(
Adder
(
vol0
))
@
(
sig_fluc
*
(
azm
_expander
@
azm
.
one_over
())
*
op
)
self
.
apply
=
op
.
apply
self
.
_fluc
=
fluctuations
...
...
@@ -365,7 +370,7 @@ class CorrelatedFieldMaker:
self
.
_total_N
=
total_N
@
staticmethod
def
make
(
offset_amplitude_mean
,
offset_amplitude_stddev
,
prefix
,
total_N
=
1
):
def
make
(
offset_amplitude_mean
,
offset_amplitude_stddev
,
prefix
,
total_N
=
0
):
offset_amplitude_stddev
=
float
(
offset_amplitude_stddev
)
offset_amplitude_mean
=
float
(
offset_amplitude_mean
)
assert
offset_amplitude_stddev
>
0
...
...
@@ -393,15 +398,15 @@ class CorrelatedFieldMaker:
dofdex
=
np
.
full
(
self
.
_total_N
,
0
)
else
:
assert
len
(
dofdex
)
==
self
.
_total_N
N
=
max
(
dofdex
)
if
self
.
_total_N
>
1
:
if
self
.
_total_N
>
0
:
space
=
1
position_space
=
makeDomain
((
UnstructuredDomain
(
self
.
_total_N
),
position_space
))
N
=
max
(
dofdex
)
+
1
position_space
=
makeDomain
((
UnstructuredDomain
(
N
),
position_space
))
else
:
space
=
0
N
=
0
position_space
=
makeDomain
(
position_space
)
N
=
1
power_space
=
PowerSpace
(
position_space
[
space
].
get_default_codomain
())
prefix
=
str
(
prefix
)
#assert isinstance(position_space[space], (RGSpace, HPSpace, GLSpace)
...
...
@@ -410,14 +415,6 @@ class CorrelatedFieldMaker:
fluctuations_stddev
,
prefix
+
'fluctuations'
,
N
)
#if copies:
# fluct = fluct*self._azm.one_over()
#else:
# #print(fluct.
# co = ContractionOperator(self._azm.target, None).adjoint
# fluct = (co @ fluct)*self._azm.one_over()
flex
=
_LognormalMomentMatching
(
flexibility_mean
,
flexibility_stddev
,
prefix
+
'flexibility'
,
N
)
...
...
@@ -442,16 +439,19 @@ class CorrelatedFieldMaker:
assert
isinstance
(
zeromode
,
Operator
)
self
.
_azm
=
zeromode
n_amplitudes
=
len
(
self
.
_a
)
if
self
.
_total_N
>
1
:
if
self
.
_total_N
>
0
:
hspace
=
makeDomain
([
UnstructuredDomain
(
self
.
_total_N
)]
+
[
dd
[
-
1
].
get_default_codomain
()
for
dd
in
self
.
_position_spaces
])
spaces
=
tuple
(
len
(
dd
)
for
dd
in
self
.
_position_spaces
)
spaces
=
1
+
np
.
cumsum
(
spaces
)
spaces
=
list
(
1
+
np
.
arange
(
n_amplitudes
))
#spaces = tuple(len(dd) for dd in self._position_spaces)
#spaces = 1 + np.cumsum(spaces)
zeroind
=
(
slice
(
None
),)
+
(
0
,)
*
(
len
(
hspace
.
shape
)
-
1
)
else
:
hspace
=
makeDomain
(
[
dd
[
-
1
].
get_default_codomain
()
for
dd
in
self
.
_position_spaces
])
spaces
=
tuple
(
range
(
n_amplitudes
))
zeroind
=
(
slice
(
None
),)
*
(
1
-
1
//
self
.
_total_N
)
+
(
0
,)
*
(
len
(
hspace
.
shape
)
-
1
+
1
//
self
.
_total_N
)
spaces
=
list
(
np
.
arange
(
n_amplitudes
))
zeroind
=
(
0
,)
*
len
(
hspace
.
shape
)
foo
=
np
.
ones
(
hspace
.
shape
)
foo
[
zeroind
]
=
0
...
...
@@ -460,7 +460,7 @@ class CorrelatedFieldMaker:
self
.
_azm
.
target
,
zeroind
).
adjoint
azm
=
Adder
(
from_global_data
(
hspace
,
foo
))
@
ZeroModeInserter
@
zeromode
spaces
=
np
.
array
(
range
(
n_amplitudes
))
+
1
-
1
//
self
.
_total_N
#
spaces = np.array(range(n_amplitudes)) + 1 - 1//self._total_N
ht
=
HarmonicTransformOperator
(
hspace
,
self
.
_position_spaces
[
0
][
self
.
_spaces
[
0
]],
space
=
spaces
[
0
])
...
...
@@ -475,12 +475,10 @@ class CorrelatedFieldMaker:
self
.
_a
[
i
].
target
[
self
.
_spaces
[
i
]],
space
=
spaces
[
i
]))
#breakpoint()
all_spaces
=
list
(
range
(
len
(
hspace
)))
a
=
ContractionOperator
(
pd
.
domain
,
spaces
[
1
:]).
adjoint
@
self
.
_a
[
0
]
for
i
in
range
(
1
,
n_amplitudes
):
co
=
ContractionOperator
(
pd
.
domain
,
all_spaces
[:
spaces
[
i
]]
+
all_spaces
[
spaces
[
i
]
+
1
:])
spaces
[:
i
]
+
spaces
[
i
+
1
:])
a
=
a
*
(
co
.
adjoint
@
self
.
_a
[
i
])
return
ht
(
azm
*
(
pd
@
a
)
*
ducktape
(
hspace
,
None
,
prefix
+
'xi'
))
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment