Skip to content
Snippets Groups Projects
nifty_power.py 31.09 KiB
## NIFTY (Numerical Information Field Theory) has been developed at the
## Max-Planck-Institute for Astrophysics.
##
## Copyright (C) 2013 Max-Planck-Society
##
## Author: Marco Selig
## Project homepage: <http://www.mpa-garching.mpg.de/ift/nifty/>
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
## See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
    ..                     __   ____   __
    ..                   /__/ /   _/ /  /_
    ..         __ ___    __  /  /_  /   _/  __   __
    ..       /   _   | /  / /   _/ /  /   /  / /  /
    ..      /  / /  / /  / /  /   /  /_  /  /_/  /
    ..     /__/ /__/ /__/ /__/    \___/  \___   /  power
    ..                                  /______/

    NIFTy offers a number of automatized routines for handling
    power spectra. It is possible to draw a field from a random distribution
    with a certain autocorrelation or, equivalently, with a certain
    power spectrum in its conjugate space (see :py:func:`field.random`). In
    NIFTy, it is usually assumed that such a field follows statistical
    homogeneity and isotropy. Fields which are only statistically homogeneous
    can also be created using the diagonal operator routine.

    At the moment, NIFTY offers several additional routines for power spectrum
    manipulation.

"""
from __future__ import division
from scipy.interpolate import interp1d as ip ## conflicts with sphinx's autodoc
#import numpy as np
from nifty_core import *
import smoothing as gs


##-----------------------------------------------------------------------------

def weight_power(domain,spec,power=1,pindex=None,pundex=None,**kwargs):
    """
        Weights a given power spectrum with the corresponding pixel volumes
        to a given power.

        Parameters
        ----------
        domain : space
            The space wherein valid arguments live.
        spec : {scalar, list, array, field, function}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
        pindex : ndarray, *optional*
            Indexing array giving the power spectrum index for each
            represented mode.
        pundex : ndarray, *optional*
            Unindexing array undoing power indexing.

        Returns
        -------
        spev : ndarray
            Weighted power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        Raises
        ------
        TypeError
            If `domain` is no space.
        ValueError
            If `domain` is no harmonic space.

    """
    ## check domain
    if(not isinstance(domain,space)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    ## check implicit power indices
    if(pindex is None):
        try:
            domain.set_power_indices(**kwargs)
        except:
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
        else:
            pindex = domain.power_indices.get("pindex")
            if(pundex is None):
                pundex = domain.power_indices.get("pundex")
            else:
                pundex = np.array(pundex,dtype=np.int)
                if(np.size(pundex)!=np.max(pindex,axis=None,out=None)+1):
                    raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(pundex))+" <> "+str(np.max(pindex,axis=None,out=None)+1)+" )."))
    ## check explicit power indices
    else:
        pindex = np.array(pindex,dtype=np.int)
        if(not np.all(np.array(np.shape(pindex))==domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: shape mismatch ( "+str(np.array(np.shape(pindex)))+" <> "+str(domain.dim(split=True))+" )."))
        if(pundex is None):
            ## quick pundex
            pundex = np.unique(pindex,return_index=True,return_inverse=False)[1]
        else:
            pundex = np.array(pundex,dtype=np.int)
            if(np.size(pundex)!=np.max(pindex,axis=None,out=None)+1):
                raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(pundex))+" <> "+str(np.max(pindex,axis=None,out=None)+1)+" )."))

    return np.real(domain.calc_weight(domain.enforce_power(spec,size=np.max(pindex,axis=None,out=None)+1)[pindex],power=power).flatten(order='C')[pundex])

##-----------------------------------------------------------------------------

##-----------------------------------------------------------------------------

def smooth_power(spec,domain=None,kindex=None,mode="2s",exclude=1,sigma=-1,**kwargs):
    """
        Smoothes a power spectrum via convolution with a Gaussian kernel.

        Parameters
        ----------
        spec : {scalar, list, array, field, function}
            The power spectrum to be smoothed.
        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : ndarray, *optional*
            The array specifying the coordinate indices in conjugate space
            (default: None).
        mode : string, *optional*
            Specifies the smoothing mode (default: "2s") :

            - "ff" (smoothing in the harmonic basis using fast Fourier transformations)
            - "bf" (smoothing in the position basis by brute force)
            - "2s" (smoothing in the position basis restricted to a 2-`sigma` interval)

        exclude : scalar, *optional*
            Excludes the first power spectrum entries from smoothing, indicated by
            the given integer scalar (default = 1, the monopol is not smoothed).
        sigma : scalar, *optional*
            FWHM of Gaussian convolution kernel (default = -1, `sigma` is set
            automatically).

        Returns
        -------
        smoothspec : ndarray
            The smoothed power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        Raises
        ------
        KeyError
            If `mode` is unsupported.

    """
    ## check implicit kindex
    if(kindex is None):
        if(isinstance(domain,space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")

        else:
            raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check power spectrum
        spec = domain.enforce_power(spec,size=np.size(kindex))
    ## check explicit kindex
    else:
        kindex = np.sort(np.real(np.array(kindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

        ## check power spectrum
        if(isinstance(spec,field)):
            spec = spec.val.astype(kindex.dtype)
        elif(callable(spec)):
            try:
                spec = np.array(spec(kindex),dtype=kindex.dtype)
            except:
                TypeError(about._errors.cstring("ERROR: invalid power spectra function.")) ## exception in ``spec(kindex)``
        elif(np.isscalar(spec)):
            spec = np.array([spec],dtype=kindex.dtype)
        else:
            spec = np.array(spec,dtype=kindex.dtype)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if(not np.all(np.isfinite(spec))):
            raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
        elif(np.any(spec<0)):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
        elif(np.any(spec==0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if(np.size(spec)==1):
            spec = spec*np.ones(size,dtype=spec.dtype,order='C')
        ## size check
        elif(np.size(spec)<size):
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(spec))+" < "+str(size)+" )."))
        elif(np.size(spec)>size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == "+str(size)+" ).")
            spec = spec[:size]

    ## smoothing
    if(mode=="2s"):
        return gs.smooth_power_2s(spec,kindex,exclude=exclude,smooth_length=sigma)
    elif(mode=="ff"):
        return gs.smooth_power(spec,kindex,exclude=exclude,smooth_length=sigma)
    elif(mode=="bf"):
        return gs.smooth_power_bf(spec,kindex,exclude=exclude,smooth_length=sigma)
    else:
        raise KeyError(about._errors.cstring("ERROR: unsupported mode '"+str(mode)+"'."))

##-----------------------------------------------------------------------------

##=============================================================================

def _calc_laplace(kindex): ## > computes Laplace operator and integrand
    ## finite differences
    l = np.r_[0,0,np.log(kindex[2:]/kindex[1])]
    dl1 = l[1:]-l[:-1]
    dl2 = l[2:]-l[:-2]
    if(np.any(dl1[1:]==0))or(np.any(dl2==0)):
        raise ValueError(about._errors.cstring("ERROR: too finely divided harmonic grid."))
    ## operator(s)
    klim = len(kindex)
    L = np.zeros((klim,klim))
    I = np.zeros(klim)
    for jj in xrange(2,klim-1): ## leave out {0,1,kmax}
        L[jj,jj-1] = 2/(dl2[jj-1]*dl1[jj-1])
        L[jj,jj] = -2/dl2[jj-1]*(1/dl1[jj]+1/dl1[jj-1])
        L[jj,jj+1] = 2/(dl2[jj-1]*dl1[jj])
        I[jj] = dl2[jj-1]/2
    return L,I

def _calc_inverse(tk,var,kindex,rho,b1,Amem): ## > computes the inverse Hessian `A` and `b2`
    ## operator `T` from Eq.(B8) times 2
    if(Amem is None):
        L,I = _calc_laplace(kindex)
        #T2 = 2*np.dot(L.T,np.dot(np.diag(I/var,k=0),L,out=None),out=None) # Eq.(B8) * 2
        if(np.isscalar(var)):
            Amem = np.dot(L.T,np.dot(np.diag(I,k=0),L,out=None),out=None)
            T2 = 2/var*Amem
        else:
            Amem = np.dot(np.diag(np.sqrt(I),k=0),L,out=None)
            T2 = 2*np.dot(Amem.T,np.dot(np.diag(1/var,k=0),Amem,out=None),out=None)
    elif(np.isscalar(var)):
        T2 = 2/var*Amem
    else:
        T2 = 2*np.dot(Amem.T,np.dot(np.diag(1/var,k=0),Amem,out=None),out=None)
    b2 = b1+np.dot(T2,tk,out=None)
    ## inversion
    return np.linalg.inv(T2+np.diag(b2,k=0)),b2,Amem

def infer_power(m,domain=None,Sk=None,D=None,pindex=None,pundex=None,kindex=None,rho=None,q=1E-42,alpha=1,perception=(1,0),smoothness=True,var=10,bare=True,**kwargs):
    """
        Infers the power spectrum.

        Given a map the inferred power spectrum is equal to ``m.power()``; given
        an uncertainty a power spectrum is inferred according to the "critical"
        filter formula, which can be extended by a smoothness prior. For
        details, see references below.

        Parameters
        ----------
        m : field
            Map for which the power spectrum is inferred.
        domain : space
            The space wherein the power spectrum is defined, can be retrieved
            from `Sk.domain` (default: None).
        Sk : projection_operator
            Projection operator specifying the pseudo trace for all projection
            bands, can be initialized from `domain` and `pindex`
            (default: None).
        D : operator, *optional*
            Operator expressing the uncertainty of the map `m`, its diagonal
            `D.hathat` in the `domain` suffices (default: 0).
        pindex : numpy.ndarray, *optional*
            Indexing array giving the power spectrum index for each
            represented mode (default: None).
        pundex : ndarray, *optional*
            Unindexing array undoing power indexing.
        kindex : numpy.ndarray, *optional*
            Scale corresponding to each band in the power spectrum
            (default: None).
        rho : numpy.ndarray, *optional*
            Number of modes per scale (default: None).
        q : {scalar, list, array}, *optional*
            Spectral scale parameter of the assumed inverse-Gamme prior
            (default: 1E-42).
        alpha : {scalar, list, array}, *optional*
            Spectral shape parameter of the assumed inverse-Gamme prior
            (default: 1).
        perception : {tuple, list, array}, *optional*
            Tuple specifying the filter perception (delta,epsilon)
            (default: (1,0)).
        smoothness : bool, *optional*
            Indicates whether the smoothness prior is used or not
            (default: True).
        var : {scalar, list, array}, *optional*
            Variance of the assumed spectral smoothness prior (default: 10).
        bare : bool, *optional*
            Indicates whether the power spectrum entries returned are "bare"
            or not (mandatory for the correct incorporation of volume weights)
            (default: True).

        Returns
        -------
        pk : numpy.ndarray
            The inferred power spectrum, weighted according to the `bare` flag.

        Other Parameters
        ----------------
        random : string, *optional*
            The distribution from which the probes for the diagonal probing are
            drawn, supported distributions are (default: "pm1"):

            - "pm1" (uniform distribution over {+1,-1} or {+1,+i,-1,-i})
            - "gau" (normal distribution with zero-mean and unit-variance)

        ncpu : int, *optional*
            The number of CPUs to be used for parallel probing (default: 2).
        nrun : int, *optional*
            The number of probes to be evaluated; if ``nrun < ncpu ** 2``, it
            will be set to ``ncpu ** 2`` (default: 8).
        nper : int, *optional*
            This number specifies how many probes will be evaluated by one
            worker. Afterwards a new worker will be created to evaluate a chunk
            of `nper` probes; it is recommended to stay with the default value
            (default: None).
        save : bool, *optional*
            If `save` is True, then the probing results will be written to the
            hard disk instead of being saved in the RAM; this is recommended
            for high dimensional fields whose probes would otherwise fill up
            the memory (default: False).
        path : string, *optional*
            The path, where the probing results are saved, if `save` is True
            (default: "tmp").
        prefix : string, *optional*
            A prefix for the saved probing results; the saved results will be
            named using that prefix and an 8-digit number (default: "").
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        Notes
        -----
        The general approach to inference of unknown power spectra is detailed
        in [#]_, where the "critical" filter formula, Eq.(37b), used here is
        derived, and the implications of a certain choise of the perception
        tuple (delta,epsilon) are discussed.
        The further incorporation of a smoothness prior as detailed in [#]_,
        where the underlying formula(s), Eq.(26), of this implementation are
        derived and discussed in terms of their applicability.

        References
        ----------
        .. [#] T.A. Ensslin and M. Frommert, "Reconstruction of signals with
            unknown spectra in information field theory with parameter
            uncertainty", Physical Review E, 2011,
            10.1103/PhysRevD.83.105014;
            `arXiv:1002.2928 <http://www.arxiv.org/abs/1002.2928>`_
        .. [#] N. Opermann et. al., "Reconstruction of Gaussian and log-normal
            fields with spectral smoothness", Physical Review E, 2013,
            10.1103/PhysRevE.87.032136;
            `arXiv:1210.6866 <http://www.arxiv.org/abs/1210.6866>`_

        Raises
        ------
        Exception, IndexError, TypeError, ValueError
            If some input is invalid.

    """
    ## check map
    if(not isinstance(m,field)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    ## check domain
    if(domain is None):
        if(Sk is None):
            raise Exception(about._errors.cstring("ERROR: insufficient input."))
        else:
            domain = Sk.domain
    elif(not isinstance(domain,space)):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    ## check implicit power indices
    if(pindex is None)or(kindex is None)or(rho is None):
        try:
            domain.set_power_indices(**kwargs)
        except:
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
        else:
            pindex = domain.power_indices.get("pindex")
            pundex = domain.power_indices.get("pundex")
            kindex = domain.power_indices.get("kindex")
            rho = domain.power_indices.get("rho")
    ## check explicit power indices
    else:
        pindex = np.array(pindex,dtype=np.int)
        if(not np.all(np.array(np.shape(pindex))==domain.dim(split=True))):
            raise ValueError(about._errors.cstring("ERROR: shape mismatch ( "+str(np.array(np.shape(pindex)))+" <> "+str(domain.dim(split=True))+" )."))
        kindex = np.sort(np.real(np.array(kindex,dtype=domain.vol.dtype).flatten(order='C')),axis=0,kind="quicksort",order=None)
        rho = np.array(rho,dtype=np.int)
        if(pundex is None):
            ## quick pundex
            pundex = np.unique(pindex,return_index=True,return_inverse=False)[1]
        else:
            pundex = np.array(pundex,dtype=np.int)
    ## check projection operator
    if(Sk is None):
        Sk = projection_operator(domain,assign=pindex)
    elif(not isinstance(Sk,projection_operator))or(not hasattr(Sk,"pseudo_tr")):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    elif(Sk.domain<>domain):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    ## check critical parameters
    if(not np.isscalar(q)):
        q = np.array(q,dtype=domain.vol.dtype).flatten()
        if(np.size(q)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if(not np.isscalar(alpha)):
        alpha = np.array(alpha,dtype=domain.vol.dtype).flatten()
        if(np.size(alpha)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))
    ## check perception (delta,epsilon)
    if(perception is None):
        perception = (1,0) ## critical perception
    elif(not isinstance(perception,(tuple,list,np.ndarray))):
        raise TypeError(about._errors.cstring("ERROR: invalid input."))
    elif(len(perception)<2):
        raise IndexError(about._errors.cstring("ERROR: invalid input."))
    if(perception[1] is None):
        perception[1] = rho/2*(perception[0]-1) ## critical epsilon
    ## check smothness variance
    if(not np.isscalar(var)):
        var = np.array(var,dtype=domain.vol.dtype).flatten()
        if(np.size(var)<>np.size(kindex)):
            raise ValueError(about._errors.cstring("ERROR: invalid input."))

    ## trace(s) of B
    trB1 = Sk.pseudo_tr(m) ## == Sk(m).pseudo_dot(m), but faster
    if(perception[0]==0)or(D is None)or(D==0):
        trB2 = 0
    else:
        trB2 = Sk.pseudo_tr(D,**kwargs) ## probing of the partial traces of D
        if(np.any(trB2<0)):
            about.warnings.cprint("WARNING: nonpositive value(s) in tr[DSk] reset to 0.")
            trB2 = np.maximum(0,trB2)
    ## power spectrum
    numerator = 2*q+trB1+perception[0]*trB2 ## non-bare(!)
    denominator1 = rho+2*(alpha-1+perception[1])

    if(smoothness):
        if(not domain.discrete):
            numerator = weight_power(domain,numerator,power=-1,pindex=pindex,pundex=pundex) ## bare(!)

        ## smoothness prior
        divergence = 1
        while(divergence):
            pk = numerator/denominator1 ## bare(!)
            tk = np.log(pk)
            Amemory = None
            var_ = var*1.1 # temporally increasing the variance
            var_OLD = -1
            breakinfo = False
            while(var_>=var): # slowly lowering the variance
                absdelta = 1
                while(absdelta>1E-3): # solving with fixed variance
                    ## solution of A delta = b1 - b2
                    Ainverse,denominator2,Amemory = _calc_inverse(tk,var_,kindex,rho,denominator1,Amemory)
                    delta = np.dot(Ainverse,numerator/pk-denominator2,out=None)
                    if(np.abs(delta).max()>absdelta): # increasing variance when speeding up
                        var_ *= 1.1
                    absdelta = np.abs(delta).max()
                    tk += min(1,0.1/absdelta)*delta # adaptive step width
                    pk *= np.exp(min(1,0.1/absdelta)*delta) # adaptive step width
                var_ /= 1.1 # lowering the variance when converged
                if(var_<var):
                    if(breakinfo): # making sure there's one iteration with the correct variance
                        break
                    var_ = var
                    breakinfo = True
                elif(var_==var_OLD):
                    if(divergence==3):
                        pot = int(np.log10(var_))
                        var = int(1+var_*10**-pot)*10**pot
                        about.warnings.cprint("WARNING: smoothness variance increased ( var = "+str(var)+" ).")
                        break
                    else:
                        divergence += 1
                else:
                    var_OLD = var_
            if(breakinfo):
                break

        ## weight if ...
        if(not domain.discrete)and(not bare):
            pk = weight_power(domain,pk,power=1,pindex=pindex,pundex=pundex) ## non-bare(!)

    else:
        pk = numerator/denominator1 ## non-bare(!)
        ## weight if ...
        if(not domain.discrete)and(bare):
            pk = weight_power(domain,pk,power=-1,pindex=pindex,pundex=pundex) ## bare(!)

    return pk

##=============================================================================

##-----------------------------------------------------------------------------

def interpolate_power(spec,mode="linear",domain=None,kindex=None,newkindex=None,**kwargs):
    """
        Interpolates a given power spectrum at new k(-indices).

        Parameters
        ----------
        spec : {scalar, list, array, field, function}
            The power spectrum. A scalars is interpreted as a constant
            spectrum.
        mode : string
            String specifying the interpolation scheme, supported
            schemes are (default: "linear"):

            - "linear"
            - "nearest"
            - "zero"
            - "slinear"
            - "quadratic"
            - "cubic"

        domain : space, *optional*
            The space wherein the power spectrum is defined (default: None).
        kindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the old power spectrum;
            can be retrieved from `domain` (default: None).
        newkindex : numpy.ndarray, *optional*
            Scales corresponding to each band in the new power spectrum;
            can be retrieved from `domain` if `kindex` is given
            (default: None).

        Returns
        -------
        newspec : numpy.ndarray
            The interpolated power spectrum.

        Other Parameters
        ----------------
        log : bool, *optional*
            Flag specifying if the spectral binning is performed on logarithmic
            scale or not; if set, the number of used bins is set
            automatically (if not given otherwise); by default no binning
            is done (default: None).
        nbin : integer, *optional*
            Number of used spectral bins; if given `log` is set to ``False``;
            integers below the minimum of 3 induce an automatic setting;
            by default no binning is done (default: None).
        binbounds : {list, array}, *optional*
            User specific inner boundaries of the bins, which are preferred
            over the above parameters; by default no binning is done
            (default: None).            vmin : {scalar, list, ndarray, field}, *optional*
            Lower limit of the uniform distribution if ``random == "uni"``
            (default: 0).

        See Also
        --------
        scipy.interpolate.interp1d

        Raises
        ------
        Exception, IndexError, TypeError, ValueError
            If some input is invalid.
        ValueError
            If an interpolation is flawed.

    """
    ## check implicit kindex
    if(kindex is None):
        if(isinstance(domain,space)):
            try:
                domain.set_power_indices(**kwargs)
            except:
                raise ValueError(about._errors.cstring("ERROR: invalid input."))
            else:
                kindex = domain.power_indices.get("kindex")
        else:
            raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check power spectrum
        spec = domain.enforce_power(spec,size=np.size(kindex))
        ## check explicit newkindex
        if(newkindex is None):
            raise Exception(about._errors.cstring("ERROR: insufficient input."))
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=domain.vol.dtype).flatten(order='C')),axis=0,kind="quicksort",order=None)
    ## check explicit kindex
    else:
        kindex = np.sort(np.real(np.array(kindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

        ## check power spectrum
        if(isinstance(spec,field)):
            spec = spec.val.astype(kindex.dtype)
        elif(callable(spec)):
            try:
                spec = np.array(spec(kindex),dtype=kindex.dtype)
            except:
                TypeError(about._errors.cstring("ERROR: invalid power spectra function.")) ## exception in ``spec(kindex)``
        elif(np.isscalar(spec)):
            spec = np.array([spec],dtype=kindex.dtype)
        else:
            spec = np.array(spec,dtype=kindex.dtype)
        ## drop imaginary part
        spec = np.real(spec)
        ## check finiteness and positivity (excluding null)
        if(not np.all(np.isfinite(spec))):
            raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
        elif(np.any(spec<0)):
            raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
        elif(np.any(spec==0)):
            about.warnings.cprint("WARNING: nonpositive value(s).")
        size = np.size(kindex)
        ## extend
        if(np.size(spec)==1):
            spec = spec*np.ones(size,dtype=spec.dtype,order='C')
        ## size check
        elif(np.size(spec)<size):
            raise ValueError(about._errors.cstring("ERROR: size mismatch ( "+str(np.size(spec))+" < "+str(size)+" )."))
        elif(np.size(spec)>size):
            about.warnings.cprint("WARNING: power spectrum cut to size ( == "+str(size)+" ).")
            spec = spec[:size]

        ## check implicit newkindex
        if(newkindex is None):
            if(isinstance(domain,space)):
                try:
                    domain.set_power_indices(**kwargs)
                except:
                    raise ValueError(about._errors.cstring("ERROR: invalid input."))
                else:
                    newkindex = domain.power_indices.get("kindex")
            else:
                raise TypeError(about._errors.cstring("ERROR: insufficient input."))
        ## check explicit newkindex
        else:
            newkindex = np.sort(np.real(np.array(newkindex,dtype=None).flatten(order='C')),axis=0,kind="quicksort",order=None)

    ## check bounds
    if(kindex[0]<0)or(newkindex[0]<0):
        raise ValueError(about._errors.cstring("ERROR: invalid input."))
    if(np.any(newkindex>kindex[-1])):
        about.warnings.cprint("WARNING: interpolation beyond upper bound.")
        ## continuation extension by point mirror
        nmirror = np.size(kindex)-np.searchsorted(kindex,2*kindex[-1]-newkindex[-1],side='left')+1
        spec = np.r_[spec,np.exp(2*np.log(spec[-1])-np.log(spec[-nmirror:-1][::-1]))]
        kindex = np.r_[kindex,(2*kindex[-1]-kindex[-nmirror:-1][::-1])]
    ## interpolation
    newspec = ip(kindex,spec,kind=mode,axis=0,copy=True,bounds_error=True,fill_value=np.NAN)(newkindex)
    ## check new power spectrum
    if(not np.all(np.isfinite(newspec))):
        raise ValueError(about._errors.cstring("ERROR: infinite value(s)."))
    elif(np.any(newspec<0)):
        raise ValueError(about._errors.cstring("ERROR: nonpositive value(s)."))
    elif(np.any(newspec==0)):
        about.warnings.cprint("WARNING: nonpositive value(s).")

    return newspec

##-----------------------------------------------------------------------------