-
Philipp Arras authoredPhilipp Arras authored
Code Overview
Executive summary
The fundamental building blocks required for IFT computations are best recognized from a large distance, ignoring all technical details.
From such a perspective,
- IFT problems largely consist of the combination of several high dimensional minimization problems.
- Within NIFTy, operators are used to define the characteristic equations and properties of the problems.
- The equations are built mostly from the application of linear operators, but there may also be nonlinear functions involved.
- The unknowns in the equations represent either continuous physical fields, or they are simply individual measured data points.
- Discretized fields have geometrical information (like locations and volume elements) associated with every entry; this information is called the field's domain.
In the following sections, the concepts briefly presented here will be discussed in more detail; this is done in reversed order of their introduction, to avoid forward references.
Domains
Abstract base class
One of the fundamental building blocks of the NIFTy5 framework is the domain. Its required capabilities are expressed by the abstract :py:class:`Domain` class. A domain must be able to answer the following queries: m
- its total number of data entries (pixels), which is accessible via the :attr:`~Domain.size` property
- the shape of the array that is supposed to hold these data entries (obtainable by means of the :attr:`~Domain.shape` property)
- equality comparison to another :class:`Domain` instance
Unstructured domains
Domains can be either structured (i.e. there is geometrical information associated with them, like position in space and volume factors), or unstructured (meaning that the data points have no associated manifold).
Unstructured domains can be described by instances of NIFTy's :class:`UnstructuredDomain` class.
Structured domains
In contrast to unstructured domains, these domains have an assigned geometry. NIFTy requires them to provide the volume elements of their grid cells. The additional methods are specified in the abstract class :class:`StructuredDomain`:
- The properties :attr:`~StructuredDomain.scalar_dvol`, :attr:`~StructuredDomain.dvol`, and :attr:`~StructuredDomain.total_volume` provide information about the domain's pixel volume(s) and its total volume.
- The property :attr:`~StructuredDomain.harmonic` specifies whether a domain is harmonic (i.e. describes a frequency space) or not
- Iff the domain is harmonic, the methods :meth:`~StructuredDomain.get_k_length_array`, :meth:`~StructuredDomain.get_unique_k_lengths`, and :meth:`~StructuredDomain.get_fft_smoothing_kernel_function` provide absolute distances of the individual grid cells from the origin and assist with Gaussian convolution.
NIFTy comes with several concrete subclasses of :class:`StructuredDomain`:
- :class:`~rg_space.RGSpace` represents a regular Cartesian grid with an arbitrary number of dimensions, which is supposed to be periodic in each dimension.
- :class:`~hp_space.HPSpace` and :class:`~gl_space.GLSpace` describe pixelisations of the 2-sphere; their counterpart in harmonic space is :class:`~lm_space.LMSpace`, which contains spherical harmonic coefficients.
- :class:`~power_space.PowerSpace` is used to describe one-dimensional power spectra.
Among these, :class:`~rg_space.RGSpace` can be harmonic or not (depending on constructor arguments), :class:`~gl_space.GLSpace`, :class:`~hp_space.HPSpace`, and :class:`~power_space.PowerSpace` are pure position domains (i.e. nonharmonic), and :class:`~lm_space.LMSpace` is always harmonic.
Combinations of domains
The fundamental classes described above are often sufficient to specify the domain of a field. In some cases, however, it will be necessary to define the field on a product of elementary domains instead of a single one. More sophisticated operators also require a set of several such fields. Some examples are:
- sky emission depending on location and energy. This could be represented by a product of an :class:`~hp_space.HPSpace` (for location) with an :class:`~rg_space.RGSpace` (for energy).
- a polarized field, which could be modeled as a product of any structured domain (representing location) with a four-element :class:`~unstructured_domain.UnstructuredDomain` holding Stokes I, Q, U and V components.
- a model for the sky emission, which holds both the current realization (on a harmonic domain) and a few inferred model parameters (e.g. on an unstructured grid).
Consequently, NIFTy defines a class called :class:`~domain_tuple.DomainTuple` holding a sequence of :class:`~domains.domain.Domain` objects, which is used to specify full field domains. In principle, a :class:`~domain_tuple.DomainTuple` can even be empty, which implies that the field living on it is a scalar.
A :class:`~domain_tuple.DomainTuple` supports iteration and indexing, and also provides the properties :attr:`~domain_tuple.DomainTuple.shape`, :attr:`~domain_tuple.DomainTuple.size` in analogy to the elementary :class:`~domains.domain.Domain`.
An aggregation of several :class:`~domain_tuple.DomainTuple` s, each member identified by a name, is described by the :class:`~multi_domain.MultiDomain` class.
Fields
Fields on a single DomainTuple
A :class:`~field.Field` object consists of the following components:
- a domain in form of a :class:`~domain_tuple.DomainTuple` object
- a data type (e.g. numpy.float64)
- an array containing the actual values
Usually, the array is stored in the form of a numpy.ndarray
, but for very
resource-intensive tasks NIFTy also provides an alternative storage method to
be used with distributed memory processing.
Fields support a wide range of arithmetic operations, either involving two fields with equal domains, or a field and a scalar. Contractions (like summation, integration, minimum/maximum, computation of statistical moments) can be carried out either over an entire field (producing a scalar result) or over sub-domains (resulting in a field defined on a smaller domain). Scalar products of two fields can also be computed easily.
There is also a set of convenience functions to generate fields with constant values or fields filled with random numbers according to a user-specified distribution.
Like almost all NIFTy objects, fields are immutable: their value or any other attribute cannot be modified after construction. To manipulate a field in ways that are not covered by the provided standard operations, its data content must be extracted first, then changed, and a new field has to be created from the result.
Fields defined on a MultiDomain
The :class:`~multi_field.MultiField` class can be seen as a dictionary of individual :class:`~field.Field` s, each identified by a name, which is defined on a :class:`~multi_domain.MultiDomain`.
Operators
All transformations between different NIFTy fields are expressed in the form of :class:`~operators.operator.Operator` objects. The interface of this class is rather minimalistic: it has a property called :attr:`~operators.operator.Operator.domain` which returns a :class:`~domain_tuple.DomainTuple` or :class:`~multi_domain.MultiDomain` object specifying the structure of the :class:`~field.Field` or :class:`~multi_field.MultiField` it expects as input, another property :attr:`~operators.operator.Operator.target` describing its output, and finally an overloaded :attr:`~operators.operator.Operator.apply` method, which can take:
- a :class:`~field.Field`/:class:`~multi_field.MultiField` object, in which case it returns the transformed :class:`~field.Field`/:class:`~multi_field.MultiField`.
- a :class:`~linearization.Linearization` object, in which case it returns the transformed :class:`~linearization.Linearization`.
This is the interface that all objects derived from :class:`~operators.operator.Operator` must implement. In addition, :class:`~operators.operator.Operator` objects can be added/subtracted, multiplied, chained (via the :attr:`__call__` method or the @ operator) and support point-wise application of functions like :class:`exp()`, :class:`log()`, :class:`sqrt()`, :class:`conjugate()`.
Advanced operators
NIFTy provides a library of commonly employed operators which can be used for specific inference problems. Currently these are:
- :class:`~smooth_linear_amplitude.SLAmplitude`, which returns a smooth power spectrum.
- :class:`~inverse_gamma_operator.InverseGammaOperator`, which models point sources which are distributed according to a inverse-gamma distribution.
- :class:`~correlated_fields.CorrelatedField`, which models a diffuse log-normal field. It takes an amplitude operator to specify the correlation structure of the field.
Linear Operators
A linear operator (represented by NIFTy5's abstract :class:`~linear_operator.LinearOperator` class) is derived from :class:`~operator.Operator` and can be interpreted as an (implicitly defined) matrix. Since its operation is linear, it can provide some additional functionality which is not available for the more generic :class:`~operator.Operator` class.
Linear Operator basics
There are four basic ways of applying an operator A to a field s:
- direct application: A(s)
- adjoint application: A^\dagger (s)
- inverse application: A^{-1} (s)
- adjoint inverse application: (A^\dagger)^{-1} (s)
Note: The inverse of the adjoint of a linear map and the adjoint of the inverse of a linear map (if all those exist) are the same.
These different actions of a linear operator Op
on a field f
can be
invoked in various ways:
- direct multiplication:
Op(f)
orOp.times(f)
orOp.apply(f, Op.TIMES)
- adjoint multiplication:
Op.adjoint_times(f)
orOp.apply(f, Op.ADJOINT_TIMES)
- inverse multiplication:
Op.inverse_times(f)
orOp.apply(f, Op.INVERSE_TIMES)
- adjoint inverse multiplication:
Op.adjoint_inverse_times(f)
orOp.apply(f, Op.ADJOINT_INVERSE_TIMES)
Operator classes defined in NIFTy may implement an arbitrary subset of these four operations. This subset can be queried using the :attr:`~linear_operator.LinearOperator.capability` property.
If needed, the set of supported operations can be enhanced by iterative inversion methods; for example, an operator defining direct and adjoint multiplication could be enhanced by this approach to support the complete set. This functionality is provided by NIFTy's :class:`~inversion_enabler.InversionEnabler` class, which is itself a linear operator.
Direct multiplication and adjoint inverse multiplication transform a field defined on the operator's :attr:`~Operator.domain` to one defined on the operator's :attr:`~Operator.target`, whereas adjoint multiplication and inverse multiplication transform from :attr:`~Operator.target` to :attr:`~Operator.domain`.
Operators with identical domain and target can be derived from :class:`~endomorphic_operator.EndomorphicOperator`. Typical examples for this category are the :class:`~scaling_operator.ScalingOperator`, which simply multiplies its input by a scalar value, and :class:`~diagonal_operator.DiagonalOperator`, which multiplies every value of its input field with potentially different values.
Further operator classes provided by NIFTy are
- :class:`~operators.harmonic_operators.HarmonicTransformOperator` for transforms from a harmonic domain to its counterpart in position space, and their adjoint
- :class:`~operators.distributors.PowerDistributor` for transforms from a :class:`~domains.power_space.PowerSpace` to an associated harmonic domain, and their adjoint.
- :class:`~operators.simple_linear_operators.GeometryRemover`, which transforms from structured domains to unstructured ones. This is typically needed when building instrument response operators.
Syntactic sugar
Nifty5 allows simple and intuitive construction of altered and combined
operators.
As an example, if A
, B
and C
are of type :class:`~operators.linear_operator.LinearOperator`
and f1
and f2
are of type :class:`~field.Field`, writing:
X = A(B.inverse(A.adjoint)) + C
f2 = X(f1)
will perform the operation suggested intuitively by the notation, checking domain compatibility while building the composed operator. The combined operator infers its domain and target from its constituents, as well as the set of operations it can support. The properties :attr:`~LinearOperator.adjoint` and :attr:`~LinearOperator.inverse` return a new operator which behaves as if it were the original operator's adjoint or inverse, respectively.
Minimization
Most problems in IFT are solved by (possibly nested) minimizations of high-dimensional functions, which are often nonlinear.
Energy functionals
In NIFTy5 such functions are represented by objects of type :class:`~energy.Energy`. These hold the prescription how to calculate the function's :attr:`~energy.Energy.value`, :attr:`~energy.Energy.gradient` and (optionally) :attr:`~energy.Energy.metric` at any given :attr:`~energy.Energy.position` in parameter space. Function values are floating-point scalars, gradients have the form of fields defined on the energy's position domain, and metrics are represented by linear operator objects.
Energies are classes that typically have to be provided by the user when tackling new IFT problems. An example of concrete energy classes delivered with NIFTy5 is :class:`~minimization.quadratic_energy.QuadraticEnergy` (with position-independent metric, mainly used with conjugate gradient minimization).
Iteration control
Iterative minimization of an energy reqires some means of checking the quality of the current solution estimate and stopping once it is sufficiently accurate. In case of numerical problems, the iteration needs to be terminated as well, returning a suitable error description.
In NIFTy5, this functionality is encapsulated in the abstract :class:`IterationController` class, which is provided with the initial energy object before starting the minimization, and is updated with the improved energy after every iteration. Based on this information, it can either continue the minimization or return the current estimate indicating convergence or failure.
Sensible stopping criteria can vary significantly with the problem being solved; NIFTy provides one concrete sub-class of :class:`IterationController` called :class:`GradientNormController`, which should be appropriate in many circumstances, but users have complete freedom to implement custom sub-classes for their specific applications.
Minimization algorithms
All minimization algorithms in NIFTy inherit from the abstract :class:`~minimizer.Minimizer` class, which presents a minimalistic interface consisting only of a :meth:`~minimizer.Minimizer.__call__` method taking an :class:`~energy.Energy` object and optionally a preconditioning operator, and returning the energy at the discovered minimum and a status code.
For energies with a quadratic form (i.e. which can be expressed by means of a :class:`~quadratic_energy.QuadraticEnergy` object), an obvious choice of algorithm is the :class:`~conjugate_gradient.ConjugateGradient` minimizer.
A similar algorithm suited for nonlinear problems is provided by :class:`~nonlinear_cg.NonlinearCG`.
Many minimizers for nonlinear problems can be characterized as
- First deciding on a direction for the next step.
- Then finding a suitable step length along this direction, resulting in the next energy estimate.
This family of algorithms is encapsulated in NIFTy's :class:`~descent_minimizers.DescentMinimizer` class, which currently has three concrete implementations: :class:`~descent_minimizers.SteepestDescent`, :class:`~descent_minimizers.NewtonCG`, :class:`~descent_minimizers.L_BFGS` and :class:`~descent_minimizers.VL_BFGS`. Of these algorithms, only :class:`~descent_minimizers.NewtonCG` requires the energy object to provide a :attr:`~energy.Energy.metric` property, the others only need energy values and gradients.
The flexibility of NIFTy's design allows using externally provided minimizers. With only small effort, adapters for two SciPy minimizers were written; they are available under the names :class:`~scipy_minimizer.ScipyCG` and :class:`~scipy_minimizer.L_BFGS_B`.
Application to operator inversion
The machinery presented here cannot only be used for minimizing functionals derived from IFT, but also for the numerical inversion of linear operators, if the desired application mode is not directly available. A classical example is the information propagator whose inverse is defined as:
D^{-1} = \left(R^\dagger N^{-1} R + S^{-1}\right).
It needs to be applied in forward direction in order to calculate the Wiener filter solution. Only its inverse application is straightforward; to use it in forward direction, we make use of NIFTy's :class:`~operators.inversion_enabler.InversionEnabler` class, which internally performs a minimization of a :class:`~minimization.quadratic_energy.QuadraticEnergy` by means of the :class:`~minimization.conjugate_gradient.ConjugateGradient` algorithm. An example is provided in :func:`~library.wiener_filter_curvature.WienerFilterCurvature`.