Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
B
Bayesian_Causal_Inference
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
ift
Bayesian_Causal_Inference
Commits
a2ef4923
Commit
a2ef4923
authored
6 years ago
by
Maximilian Kurthen
Browse files
Options
Downloads
Patches
Plain Diff
numpy nifty split, now two seperate benchmark scripts
parent
0ae71fd5
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
do_benchmark_nifty.py
+155
-0
155 additions, 0 deletions
do_benchmark_nifty.py
with
155 additions
and
0 deletions
do_benchmark_nifty.py
0 → 100644
+
155
−
0
View file @
a2ef4923
import
os
import
colorama
import
numpy
as
np
from
sklearn.preprocessing
import
MinMaxScaler
import
nifty5
import
bayesian_causal_model_nifty.cause_model_shallow
from
benchmark_utils
import
BCMParser
,
get_benchmark_default_length
,
get_pair
parser
=
BCMParser
()
args
=
parser
.
parse_args
()
NAME
=
args
.
name
FIRST_ID
=
args
.
first_id
LAST_ID
=
args
.
last_id
N_BINS
=
args
.
nbins
NOISE_VAR
=
args
.
noise_var
ITERATION_LIMIT
=
args
.
iteration_limit
TOL_REL_GRADNORM
=
args
.
tol_rel_gradnorm
BENCHMARK
=
args
.
benchmark
VERBOSITY
=
args
.
verbosity
POWER_SPECTRUM_BETA_STR
=
args
.
power_spectrum_beta
POWER_SPECTRUM_F_STR
=
args
.
power_spectrum_f
RHO
=
args
.
rho
SCALE_MAX
=
args
.
scale_max
SUBSAMPLE
=
args
.
subsample
CONFIG
=
args
.
config
if
CONFIG
is
not
None
:
with
open
(
'
./model_configurations.txt
'
)
as
f
:
configs
=
eval
(
f
.
read
())
parameters
=
configs
[
CONFIG
]
N_BINS
=
parameters
.
get
(
'
nbins
'
,
N_BINS
)
NOISE_VAR
=
parameters
.
get
(
'
noise_var
'
,
NOISE_VAR
)
POWER_SPECTRUM_BETA_STR
=
parameters
.
get
(
'
power_spectrum_beta
'
,
POWER_SPECTRUM_BETA_STR
)
POWER_SPECTRUM_F_STR
=
parameters
.
get
(
'
power_spectrum_f
'
,
POWER_SPECTRUM_F_STR
)
ITERATION_LIMIT
=
parameters
.
get
(
'
iteration_limit
'
,
ITERATION_LIMIT
)
TOL_REL_GRADNORM
=
parameters
.
get
(
'
tol_rel_gradnorm
'
,
TOL_REL_GRADNORM
)
if
LAST_ID
is
None
:
LAST_ID
=
get_benchmark_default_length
(
BENCHMARK
)
print
(
'
performing {} benchmark for ids {} to {},
\n
'
'
with N_bins: {},
\n
'
'
noise variance: {}
\n
'
'
power spectrum beta: {}
\n
'
'
power spectrum f: {}
\n
'
'
rho: {}
\n
'
'
scale_max: {}
\n
'
'
storing results with suffix {}
'
.
format
(
BENCHMARK
,
FIRST_ID
,
LAST_ID
,
N_BINS
,
NOISE_VAR
,
POWER_SPECTRUM_BETA_STR
,
POWER_SPECTRUM_F_STR
,
RHO
,
SCALE_MAX
,
NAME
))
np
.
random
.
seed
(
1
)
POWER_SPECTRUM_BETA
=
lambda
q
:
eval
(
POWER_SPECTRUM_BETA_STR
)
POWER_SPECTRUM_F
=
lambda
q
:
eval
(
POWER_SPECTRUM_F_STR
)
scale
=
(
0
,
SCALE_MAX
)
prediction_file
=
'
./benchmark_predictions/{}_{}.txt
'
.
format
(
BENCHMARK
,
NAME
)
if
os
.
path
.
isfile
(
prediction_file
):
c
=
0
while
os
.
path
.
isfile
(
prediction_file
):
c
+=
1
prediction_file
=
'
./benchmark_predictions/{}_{}_{}.txt
'
.
format
(
BENCHMARK
,
NAME
,
c
)
np
.
random
.
seed
(
1
)
accuracy
=
0
sum_of_weights
=
0
weighted_correct
=
0
for
i
in
range
(
FIRST_ID
-
1
,
LAST_ID
):
(
x
,
y
),
true_direction
,
weight
=
get_pair
(
i
,
BENCHMARK
,
subsample_size
=
SUBSAMPLE
)
if
true_direction
==
0
:
continue
scaler
=
MinMaxScaler
(
scale
)
x
,
y
=
scaler
.
fit_transform
(
np
.
array
((
x
,
y
)).
T
).
T
minimizer
=
nifty5
.
RelaxedNewton
(
controller
=
nifty5
.
GradientNormController
(
tol_rel_gradnorm
=
TOL_REL_GRADNORM
,
iteration_limit
=
ITERATION_LIMIT
,
convergence_level
=
5
,
))
bcm
=
bayesian_causal_model_nifty
.
cause_model_shallow
.
CausalModelShallow
(
N_bins
=
N_BINS
,
noise_var
=
NOISE_VAR
,
rho
=
RHO
,
power_spectrum_beta
=
POWER_SPECTRUM_BETA
,
power_spectrum_f
=
POWER_SPECTRUM_F
,
minimizer
=
minimizer
,
)
bcm
.
set_data
(
x
,
y
)
H1
=
bcm
.
get_evidence
(
direction
=
1
,
verbosity
=
VERBOSITY
-
1
)
H2
=
bcm
.
get_evidence
(
direction
=-
1
,
verbosity
=
VERBOSITY
-
1
)
predicted_direction
=
1
if
int
(
H1
<
H2
)
else
-
1
if
predicted_direction
==
true_direction
:
fore
=
colorama
.
Fore
.
GREEN
weighted_correct
+=
weight
else
:
fore
=
colorama
.
Fore
.
RED
sum_of_weights
+=
weight
accuracy
=
weighted_correct
/
sum_of_weights
if
VERBOSITY
>
0
:
print
(
'
dataset {}, {} true direction: {}, predicted direction {}
\n
'
'
H1: {:.2e},
\n
H2: {:.2e},
\n
{}
'
'
accuracy so far: {:.2f}
'
.
format
(
i
,
fore
,
true_direction
,
predicted_direction
,
H1
,
H2
,
colorama
.
Style
.
RESET_ALL
,
accuracy
))
with
open
(
prediction_file
,
'
a
'
)
as
f
:
f
.
write
(
'
{} {} {} {}
\n
'
.
format
(
i
+
1
,
predicted_direction
,
H1
,
H2
))
print
(
'
accuracy: {:.2f}
'
.
format
(
accuracy
))
benchmark_information
=
{
'
benchmark
'
:
BENCHMARK
,
'
model
'
:
MODEL
,
'
n_bins
'
:
N_BINS
,
'
noise_var
'
:
NOISE_VAR
,
'
rho
'
:
RHO
,
'
power_spectrum_beta
'
:
POWER_SPECTRUM_BETA_STR
,
'
power_spectrum_f
'
:
POWER_SPECTRUM_F_STR
,
'
accuracy
'
:
accuracy
,
'
prediction_file
'
:
prediction_file
,
}
with
open
(
'
benchmark_predictions/benchmarks_meta.txt
'
,
'
a
'
)
as
f
:
f
.
write
(
str
(
benchmark_information
)
+
'
\n
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment