Skip to content
Snippets Groups Projects
Commit e9f715ea authored by Theo Steininger's avatar Theo Steininger
Browse files

Implemented pymultinest MPI magic in Pipeline; still untested.

parent 374f0b38
No related branches found
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
from likelihood import Likelihood
from ensemble_likelihood import EnsembleLikelihood
from ensemble_likelihood import *
......@@ -2,24 +2,33 @@
import numpy as np
from imagine.likelihoods.likelihood import Likelihood
class EnsembleLikelihood(Likelihood):
def __init__(self, measured_data, data_covariance_operator):
class EnsembleLikelihood(object):
def __init__(self, observable_name, measured_data,
data_covariance_operator):
self.observable_name = observable_name
self.measured_data = measured_data
self.data_covariance_operator = data_covariance_operator
def __call__(self, observable):
field = observable[self.observable_name]
return self._process_simple_field(field,
self.measured_data,
self.data_covariance_operator)
def _process_simple_field(self, field, measured_data,
data_covariance_operator):
# https://en.wikipedia.org/wiki/Sherman%E2%80%93Morrison_formula#Generalization
# B = A^{-1} + U U^dagger
# A = data_covariance
# B^{-1} c = (A_inv -
# A_inv U (I_k + U^dagger A_inv U)^{-1} U^dagger A_inv) c
observable = field
k = observable.shape[0]
A = self.data_covariance_operator
A = data_covariance_operator
obs_val = observable.val.get_full_data()
obs_mean = observable.mean(spaces=0).val.get_full_data()
......@@ -36,7 +45,7 @@ class EnsembleLikelihood(Likelihood):
middle = np.linalg.inv(middle)
result_array = np.zeros(k)
for i in xrange(k):
c = self.measured_data - obs_val[i]
c = measured_data - obs_val[i]
# assuming that A == A^dagger, this can be shortend
# a_c = A.inverse_times(c)
......
# -*- coding: utf-8 -*-
import os
import numpy as np
from mpi4py import MPI
from keepers import Loggable
from likelihoods import Likelihood
from magnetic_fields import MagneticFieldFactory
from observers import Observer
from priors import Prior
from imagine.pymultinest import pymultinest
comm = MPI.COMM_WORLD
size = comm.size
rank = comm.rank
class Pipeline(Loggable, object):
......@@ -111,5 +121,51 @@ class Pipeline(Loggable, object):
self.logger.debug("Setting ensemble size to %i." % ensemble_size)
self._ensemble_size = ensemble_size
def _multinest_likelihood(self, cube, ndim, nparams):
cube_content = np.empty(ndim)
for i in xrange(ndim):
cube_content[i] = cube[i]
if rank != 0:
raise RuntimeError("_multinest_likelihood must only be called on "
"rank==0.")
for i in xrange(1, size):
comm.send(cube_content, dest=i)
return self._core_likelihood(cube_content)
def _listen_for_likelihood_calls(self):
cube = comm.recv(obj=None, source=0)
self._core_likelihood(cube)
def _core_likelihood(self, cube):
# translate cube to variables
variables = {}
for i, av in enumerate(self.active_variables):
variables[av] = cube[i]
# create magnetic field
b_field = self.magnetic_field_factory(variables=variables,
ensemble_size=self.ensemle_size)
# create observables
observables = self.observer(b_field)
# add up individual log-likelihood terms
likelihood = 0
for like in self.likelihood:
likelihood += like(observables)
return likelihood
def __call__(self, variables):
pass
if rank == 0:
# kickstart pymultinest
if not os.path.exists("chains"):
os.mkdir("chains")
pymultinest.run(self._multinest_likelihood,
self.prior,
len(self.active_variables),
verbose=True)
else:
# let all other nodes listen for likelihood evaluations
self._listen_for_likelihood_calls()
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment