Skip to content
Snippets Groups Projects
Commit b1d911f5 authored by Theo Steininger's avatar Theo Steininger
Browse files

Initial commit. Very early sketch of a Pipeline class.

parents
No related branches found
No related tags found
No related merge requests found
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
env/
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
*.egg-info/
.installed.cfg
*.egg
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*,cover
.hypothesis/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
# Sphinx documentation
docs/_build/
# PyBuilder
target/
#Ipython Notebook
.ipynb_checkpoints
# pyenv
.python-version
fort.99
from .version import __version__
from likelihoods import *
from observers import *
from priors import *
from pipeline import Pipeline
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
import numpy as np
from keepers import Loggable
from likelihoods import Likelihood
from observers import Observer
from priors import Prior
class Pipeline(Loggable, object):
def __init__(self, observer, likelihood, prior,
parameters=[], ensemble_size=1):
self.logger.debug("Setting up pipeline.")
self.observer = observer
self.likelihood = likelihood
self.prior = prior
self.parameters = parameters
self.ensemble_size = ensemble_size
@property
def observer(self):
return self._observer
@observer.setter
def observer(self, observer):
if not isinstance(observer, Observer):
raise TypeError("observer must be an instance of Observer-class.")
self.logger.debug("Setting observer.")
self._observer = observer
@property
def likelihood(self):
return self._likelihood
@likelihood.setter
def likelihood(self, likelihood):
if not isinstance(likelihood, Likelihood):
raise TypeError(
"likelihood must be an instance of likelihood-class.")
@property
def prior(self):
return self._prior
@prior.setter
def prior(self, prior):
if not isinstance(prior, Prior):
raise TypeError(
"prior must be an instance of prior-class.")
@property
def parameters(self):
return self._parameters
@parameters.setter
def parameters(self, parameters):
"""
parameters is either a list of the parameter-names, or a list of lists
containing [parameter-name, min, max, mean]
"""
new_parameters = []
for p in parameters:
if isinstance(p, list):
new_parameters += [[str(p[0]), p[1], p[2], p[3]]]
else:
new_parameters += [[str(p), None, None, None]]
self.logger.debug("Setting parameters to %s." % str(new_parameters))
self._parameters = new_parameters
@property
def ensemble_size(self):
return self._ensemble_size
@ensemble_size.setter
def ensemble_size(self, ensemble_size):
ensemble_size = int(ensemble_size)
if ensemble_size <= 0:
raise ValueError("ensemble_size must be positive!")
self.logger.debug("Setting ensemble size to %i." % ensemble_size)
self._ensemble_size = ensemble_size
@staticmethod
def carrier_mapper(x, a=-np.inf, b=np.inf, m=0):
"""
Maps x from [-inf, inf] into the interval [a, b], where x=0 -> m
"""
if a == -np.inf and b == np.inf and m == 0:
return x
x = np.float(x)
a = np.float(a)
b = np.float(b)
if m is None:
if a == -np.inf and b == np.inf:
m = 0
else:
m = a + (b-a)/2.
else:
m = np.float(m)
# map x from [-inf, inf] to [0, 1]
y = np.arctan(x)/np.pi + 0.5
# compute where m would lie in [0, 1]
n = (m - a)/(b - a)
# strech y, such that x=0 -> n
y = y**np.emath.logn(0.5, n)
# strech y to the interval [a,b]
y = y*(b-a) + a
return y
def __call__(self, parameter_list):
parameter_dict = {}
for (i, p) in enumerate(self.parameters):
parameter_dict[p[0]] = self.carrier_mapper(parameter_list[i],
a=p[1],
b=p[2],
m=p[3])
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-
# Store the version here so:
# 1) we don't load dependencies by storing it in __init__.py
# 2) we can import it in setup.py for the same reason
# 3) we can import it into your module module
__version__ = '0.0.1a1'
setup.py 0 → 100644
# -*- coding: utf-8 -*-
import os
from setuptools import setup, find_packages
exec(open('imagine/version.py').read())
#from distutils.core import setup
# Utility function to read the README file.
# Used for the long_description. It's nice, because now 1) we have a top level
# README file and 2) it's easier to type in the README file than to put a raw
# string in below ...
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
setup(name = "imagine",
version = __version__,
author = "Theo Steininger",
author_email = "theos@mpa-garching.mpg.de",
description = ("A framework for galactic magnetic field model analysis."),
license = "BSD",
keywords = "",
#url = "https://gitlab.mpcdf.mpg.de/ift/keepers",
packages=find_packages(),
package_data={'': ['*.npy'],
'imagine.hammurapy': ['confs/*'],},
package_dir={"imagine": "imagine"},
zip_safe=False,
classifiers=[
"Development Status :: 3 - Alpha",
"Topic :: Utilities",
"License :: OSI Approved :: BSD License",
],
)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment