Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Intro to HPO
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
dataanalytics-public
Intro to HPO
Commits
126e399d
Commit
126e399d
authored
1 year ago
by
Piero Coronica
Browse files
Options
Downloads
Patches
Plain Diff
STY: similar train_fn
parent
95cdb30d
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
src/0-train.py
+5
-3
5 additions, 3 deletions
src/0-train.py
src/1-optuna-train.py
+10
-5
10 additions, 5 deletions
src/1-optuna-train.py
src/2-raytune-train.py
+20
-11
20 additions, 11 deletions
src/2-raytune-train.py
with
35 additions
and
19 deletions
src/0-train.py
+
5
−
3
View file @
126e399d
...
...
@@ -7,18 +7,20 @@ from utils import train_epoch, eval_model, get_FashionMNIST
from
argparse
import
ArgumentParser
def
train
(
args
):
print
(
f
"
Hyper
-p
arameters
:
{
vars
(
args
)
}
"
)
def
train
_fn
(
args
):
#
Hyper
P
arameters
lr
=
args
.
lr
hidden
=
args
.
hidden
bs
=
args
.
bs
epochs
=
args
.
epochs
hidden
=
args
.
hidden
# Model and Training configuration
device
=
torch
.
device
(
"
cuda
"
)
model
=
MLP
(
hidden
=
hidden
).
to
(
device
)
optimizer
=
optim
.
SGD
(
params
=
model
.
parameters
(),
lr
=
lr
)
loss
=
F
.
nll_loss
# Dataset
train_loader
,
valid_loader
=
get_FashionMNIST
(
batch_size
=
bs
,
device
=
device
...
...
This diff is collapsed.
Click to expand it.
src/1-optuna-train.py
+
10
−
5
View file @
126e399d
...
...
@@ -5,22 +5,27 @@ import torch.optim as optim
from
models
import
MLP
from
utils
import
train_epoch
,
eval_model
,
get_FashionMNIST
from
argparse
import
ArgumentParser
import
optuna
def
train_fn
(
trial
):
# HyperParameters
lr
=
trial
.
suggest_float
(
'
lr
'
,
1e-3
,
1
,
log
=
True
)
bs
=
64
hidden
=
trial
.
suggest_int
(
'
hidden
'
,
64
,
512
,
64
)
hidden
=
128
bs
=
64
epochs
=
10
device
=
torch
.
device
(
"
cuda
"
)
train_loader
,
valid_loader
=
get_FashionMNIST
(
batch_size
=
bs
,
device
=
device
)
# Model and Training configuration
device
=
torch
.
device
(
"
cuda
"
)
model
=
MLP
(
hidden
=
hidden
).
to
(
device
)
optimizer
=
optim
.
SGD
(
params
=
model
.
parameters
(),
lr
=
lr
)
loss
=
F
.
nll_loss
# Dataset
train_loader
,
valid_loader
=
get_FashionMNIST
(
batch_size
=
bs
,
device
=
device
)
# Training loop
for
epoch
in
range
(
1
,
epochs
+
1
):
train_epoch
(
model
,
device
,
train_loader
,
optimizer
,
...
...
This diff is collapsed.
Click to expand it.
src/2-raytune-train.py
+
20
−
11
View file @
126e399d
...
...
@@ -11,24 +11,33 @@ import ray
from
ray
import
train
,
tune
def
train_fn
(
config
,
data_dir
):
lr
=
config
[
'
lr
'
]
bs
=
64
# HyperParameters
lr
=
config
[
'
lr
'
]
hidden
=
config
[
'
hidden
'
]
bs
=
64
epochs
=
10
# Model and Training configuration
device
=
torch
.
device
(
"
cuda
"
)
train_loader
,
valid_loader
=
get_FashionMNIST
(
batch_size
=
bs
,
device
=
device
,
path
=
data_dir
)
model
=
MLP
(
hidden
=
hidden
).
to
(
device
)
optimizer
=
optim
.
SGD
(
params
=
model
.
parameters
(),
lr
=
lr
)
loss
=
F
.
nll_loss
# Dataset
train_loader
,
valid_loader
=
get_FashionMNIST
(
batch_size
=
bs
,
device
=
device
,
path
=
data_dir
)
# Training loop
for
epoch
in
range
(
1
,
epochs
+
1
):
train_epoch
(
model
,
device
,
train_loader
,
optimizer
,
loss
,
epoch
,
verbose
=
False
)
_
,
acc
=
eval_model
(
model
,
device
,
valid_loader
,
loss
,
verbose
=
False
)
train
.
report
({
'
accuracy
'
:
acc
})
train_epoch
(
model
,
device
,
train_loader
,
optimizer
,
loss
,
epoch
,
verbose
=
False
)
_
,
valid_acc
=
eval_model
(
model
,
device
,
valid_loader
,
loss
,
verbose
=
False
)
train
.
report
({
'
accuracy
'
:
valid_acc
})
if
__name__
==
'
__main__
'
:
parser
=
ArgumentParser
(
add_help
=
False
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment